
豆科MIKC型MADS-box基因家族生物信息学分析
张月, 王佳琪, 于子建, 许强, 张岚, 潘玉欣
中国油料作物学报 ›› 2022, Vol. 44 ›› Issue (4) : 798-809.
豆科MIKC型MADS-box基因家族生物信息学分析
Bioinformatics analysis of MIKC-type MADS-box gene family in legumes
MIKC型MADS-box是一类生物功能丰富的转录因子家族,参与调控植物的生长发育。为深入研究豆科MIKC型MADS-box基因家族生物学特性,利用生物信息学方法在大豆和蒺藜苜蓿中分别鉴定出92和45个MIKC型基因,并将其分为15个亚类。蛋白基序分析发现,大豆与蒺藜苜蓿不同亚类的共同基序不同,基因结构发生变化;共线性分析及K S分析表明,大豆90.5%的基因对和蒺藜苜蓿87.1%的基因对产生于双子叶植物共同经历的三倍化事件之前;大豆基因表达模式分析表明,大豆幼苗期总体表达量高于其他时期,其中SVP、SOC1、AGL12亚类表达量较高;蛋白互作网络分析表明,大豆SVP蛋白与CO、FT和TFL1蛋白相互作用,一起调控植物开花发育。本研究为进一步揭示MADS-box家族基因的生物学功能奠定基础。
MIKC MADS-box is a biological function rich family of transcription factors, and involved in regulating plant growth and development. In order to study the biological characteristics of MIKC-type MADS-box family genes in legumes, 92 and 45 MADS-box genes were identified in soybean and Medicago truncatula by bioinformatics method, and they were divided into 15 subfamilies. Motif analysis showed that the motifs of soybean and Medicago were different, and the gene structure and function changed. Collinearity and K s analysis showed that 90.5% of the MIKC gene pairs in soybean and 87.1% of the MIKC-type gene pairs in Medicago were generated before the whole genome triplication in dicotyledons. Expression pattern analysis of genes in soybean showed that the MIKC MADS-box genes in soybean seedling stage were expressed higher than other stages, especially the expression of SVP, SOC1 and AGL12 subfamilies. Protein interaction network showed that soybean protein SVP interacted with CO, FT and TFL1 to regulate plant flowering. This study will lay a foundation for the further biological functions of MADS-box gene family.
MIKC型MADS-box / 转录因子 / 大豆 / 进化 / 表达模式分析 {{custom_keyword}} /
MIKC-type MADS-box / transcription factors / soybean / evolution / expression pattern analysis {{custom_keyword}} /
图1 4个物种MIKC型MADS-box基因在不同亚类中的数量分布Fig. 1 Quantity distribution of MIKC-type MADS-box genes in different subfamilies of each species |
表1 大豆MIKC型MADS-box蛋白的理化性质及亚细胞定位Table 1 Physicochemical properties and subcellular localization of soybean MIKC-type MADS-boxproteins |
亚类 Subgroup | 氨基酸数量/aa Number of amino acids | 分子量/kD Molecular weight | 等电点 pI | 不稳定系数 Instability index | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|
MIKC* | 325~354 | 36 688.47~40 409.85 | 5.65~6.84 | 44.43~67.16 | nucl |
PI | 181~208 | 20 907.02~24 394.79 | 7.82~8.87 | 45.28~54.38 | nucl |
AP3 | 227~243 | 26 185.89~28 023.26 | 9.17~9.32 | 27.88~47.32 | nucl |
BS | 245~246 | 28 916.87~29 081.13 | 6.52~6.68 | 56.90~78.50 | cyto |
AG/STK | 222~247 | 25 696.40~28 426.04 | 9.25~9.72 | 49.32~64.90 | nucl |
AGL12 | 203~204 | 22 990.75~23 297.09 | 8.93~9.10 | 40.37~41.04 | mito |
SEP1 | 243~255 | 27 685.27~29 210.10 | 6.46~8.94 | 37.17~52.09 | nucl |
AGL6 | 230~245 | 26 573.23~28 603.19 | 8.62~9.15 | 43.80~60.34 | nucl |
AP1 | 236~253 | 27 428.39~28 452.56 | 8.55~9.58 | 42.13~67.59 | nucl,chlo |
SOC1 | 126~237 | 24 106.42~27 197.87 | 8.58~9.55 | 50.98~68.53 | nucl |
AGL15 | 126~246 | 14 182.42~27 941.70 | 5.30~10.11 | 44.07~63.45 | nucl |
SVP | 204~248 | 23 430.83~28 679.29 | 5.58~9.65 | 42.38~67.23 | nucl |
AGL17 | 97~257 | 10 915.86~29 299.72 | 6.97~9.62 | 44.32~59.50 | nucl,cyto |
FLC | 198~243 | 22 764.24~27 685.27 | 6.46~8.77 | 36.78~40.09 | nucl,cyto |
表2 蒺藜苜蓿MIKC型MADS-box蛋白的理化性质及亚细胞定位Table 2 Physicochemical properties and subcellular localization of MedicagoMIKC-type MADS-box proteins |
亚类 Subgroup | 氨基酸数量/aa Number of amino acids | 分子量/kD Molecular weight | 等电点 pI | 不稳定系数 Instability index | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|
MIKC* | 318~402 | 36 080.67~45 575.26 | 5.22~8.17 | 41.73~70.43 | nucl,chlo |
PI | 180~181 | 21 051.41~20 855.95 | 8.87~9.64 | 43.43~89.89 | nucl,cyto |
AP3 | 229~231 | 26 609.31~26 941.92 | 9.16~9.24 | 31.17~40.92 | nucl |
BS | 232 | 27 417.37 | 6.46 | 45.91 | mito |
AG/STK | 223~260 | 25 963.57~29 690.34 | 6.97~9.37 | 31.46~65.4 | nucl |
AGL12 | 202 | 22 890.77 | 8.78 | 43.75 | chlo |
SEP1 | 50~250 | 5 590.64~28 850.58 | 4.78~9.07 | 38.73~54.38 | nucl,chlo |
AGL6 | 189~251 | 22 127.54~29 480.69 | 8.88~9.33 | 40.99~47.86 | nucl,cyto |
AP1 | 62~256 | 7 054.27~29 223.40 | 8.24~9.86 | 41.85~54.42 | nucl |
SOC1 | 205~230 | 23 786.38~26 302.74 | 7.68~9.51 | 46.43~52.11 | nucl |
AGL15 | 249~256 | 28 195.10~29 267.42 | 6.98~8.8 | 55.05~65.24 | nucl |
SVP | 135~239 | 15 741.38~27 825.90 | 5.65~9.25 | 45.98~53.93 | nucl |
AGL17 | 61~278 | 6 878.05~31 769.53 | 8.85~10.65 | 43.00~49.26 | nucl,mito |
FLC | ----- | ----- | ----- | ----- | ----- |
图5 大豆、蒺藜苜蓿、葡萄MIKC型MADS-box基因共线性分析Fig. 5 Collinearity analysis of MIKC-type MADS-box genes in soybean, Medicagoand grape |
图6 大豆和蒺藜苜蓿MIKC型MADS-box基因Ks 值分析Fig. 6 Analysis of K S value of MIKC-type MADS-box genes in soybeanand Medicago |
图7 大豆MIKC型MADS-box基因不同发育时期的表达量Fig. 7 Expression of MIKC-type MADS-box gene family in soybeanat different developmental stages |
1 |
胡丽芳, 金志强, 徐碧玉. MADS-box基因在果实发育、成熟过程中的作用[J]. 分子植物育种, 2005, 3(3): 415-420. DOI:10.3969/j.issn.1672-416X.2005.03.018 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
郑玲, 谢爱玲, 韩建明. 高粱MADS-box家族基因的鉴定与分析[J]. 东北农业科学, 2019, 44(5): 26-29. DOI:10.16423/j.cnki.1003-8701.2019.05.006 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
苏亚丽, 刘梦佳, 李海峰. 水稻MADS-box基因研究进展[J]. 河南农业科学, 2016, 45(9): 1-7. DOI:10.15933/j.cnki.1004-3268.2016.09.001 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
董金金, 刘伟, 李萌, 等. 银杏MADS-box基因家族的表达及系统发育分析[J]. 植物生理学报, 2018, 54(6): 1055-1063. DOI:10.13592/j.cnki.ppj.2017.0574 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
赵夏云, 鲜登宇, 宋明, 等. MIKC型MADS-box蛋白对开花调控作用研究进展[J]. 生物技术通报, 2014(7): 8-15. DOI:10.13560/j.cnki.biotech.bull.1985.2014.07.002 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
胡瑞波, 范成明, 李宏宇, 等. 大豆MIKC型MADS-box基因家族分析[J]. 分子植物育种, 2009, 7(3): 429-436. DOI:10.3969/mpb.007.000429 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
周娜, 汪露瑶, 张天真, 等. 陆地棉MIKCC基因家族的全基因组分析[J]. 棉花学报, 2017, 29(6): 495-503. DOI:10.11963/1002-7807.znhy.20170913 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
高虎虎, 张云霄, 胡胜武, 等. 甘蓝型油菜MADS-box基因家族的鉴定与系统进化分析[J]. 植物学报, 2017, 52: 699-712.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
肖勇, 杨耀东, 夏薇, 等. 多倍体在植物进化中的意义[J]. 广东农业科学, 2013, 40(16): 127-130. DOI:10.16768/j.issn.1004-874x.2013.16.002 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
黄方. 大豆花发育相关基因的克隆与功能研究[D]. 南京: 南京农业大学, 2007.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
汪潇琳, 陈艳萍, 喻德跃. MADS-box基因GmAGL15在大豆种子发育过程中的表达[J]. 作物学报, 2008, 34(2): 330-332. DOI:10.3321/j.issn: 0496-3490.2008.02.024 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
李玉舒. 梅花成花相关基因SOC1、SVP和LFY的功能分析[D]. 北京: 北京林业大学, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
万薇, 余坤江, 叶波涛, 等. TFL1相关基因调控植物花序发育的分子机制[J]. 植物生理学报, 2020, 56(3): 367-372. DOI:10.13592/j.cnki.ppj.2019.0358 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
罗碧珍, 罗永海. 开花植物CO/FT分子途径的生物学功能和分子进化[J]. 福建农林大学学报(自然科学版), 2021, 50(2): 155-163. DOI:10.13323/j.cnki.j.fafu(nat.sci.).2021.02.002 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
张加强, 朱开元, 史小华. 芍药MADS-box基因家族的鉴定及适应性进化分析[J]. 分子植物育种, 2019, 17(21): 6959-6966. DOI:10.13271/j.mpb.017.006959 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
38 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
39 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
40 |
张頔, 高晓阳, 张轩, 等. 花发育相关基因分子进化与花发育调控网络拓扑中心性的相关性研究[J]. 安徽农业科学, 2021, 49(8): 1-4. DOI:10.3969/j.issn.0517-6611.2021.08.001 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |