中国油料作物学报 ›› 2022, Vol. 44 ›› Issue (4): 687-698.doi: 10.19802/j.issn.1007-9084.2021177
• 综述与专论 • 下一篇
收稿日期:
2021-06-23
出版日期:
2022-08-25
发布日期:
2022-08-30
通讯作者:
杨耀东
E-mail:jlf_0511@163.com;yyang@catas.cn
作者简介:
金龙飞(1988- ),男,博士,助理研究员,主要从事热带木本油料作物遗传育种研究,E-mail: 基金资助:
Long-fei JIN(), Li-xia ZHOU, Hong-xing CAO, Yao-dong YANG(
)
Received:
2021-06-23
Online:
2022-08-25
Published:
2022-08-30
Contact:
Yao-dong YANG
E-mail:jlf_0511@163.com;yyang@catas.cn
摘要:
油脂是植物主要的储能物质,也是植物质膜的重要组分,同时还参与植物信号传导、气孔开闭、授粉受精、种子萌发、胁迫响应等多个生物学过程。WRINKLED 1(WRI1)是AP2转录因子家族的成员,在油脂合成过程中起重要调控作用。本文综述了近年来WRI1在植物油脂合成中的研究进展,主要包括(1)WRI1的发现、起源和进化特征;(2)WRI1的基因表达特征、基因结构、蛋白质结构和启动子顺式作用元件;(3)WRI1的转录水平和翻译水平调控机制以及下游的靶基因;(4)对WRI1后续的研究思路和应用前景进行展望。本综述内容以期为深入了解WRI1调控植物油脂合成的分子机制提供参考,也为利用WRI1改良油料作物提供理论基础。
中图分类号:
金龙飞, 周丽霞, 曹红星, 杨耀东. WRI1调控植物油脂合成的研究进展[J]. 中国油料作物学报, 2022, 44(4): 687-698.
Long-fei JIN, Li-xia ZHOU, Hong-xing CAO, Yao-dong YANG. Progress on WRI1 regulation of plant oil biosynthesis[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 687-698.
表1
模式植物及油料作物中WRI1的鉴定
分类 Classification | 基因名 Gene name | 物种 Species | 蛋白质登录号 Protein accession number | 参考文献 References |
---|---|---|---|---|
单子叶植物Monocotyledons | ZmWRI1 | 玉米Zea mays | NP_001105518 | [ |
EgWRI1-1 EgWRI1-2 EgWRI1-3 | 油棕Elaeis guineensis | XP_010922928 XP_010922935 XP_010931490 | [ | |
AsWRI1a AsWRI1b AsWRI1c | 燕麦Avena sativa | MK138587 MK138588 MK138589 | [ | |
BdWRI1 | 二穗短柄草Brachypodium distachyon | KQJ92474 | [ | |
CnWRI1 | 椰子Cocos nucifera | AFH68065 | [ | |
OsWRI1-1 OsWRI1-2 | 水稻Oryza sativa | ABA91302 ABA96352 | [ | |
双子叶植物 Dicotyledons | AtWRI1 | 拟南芥Arabidopsis thaliana | NP_001030857.1 | [ |
BnWRI1-1 | 油菜Brassica napus | ABD72476 | [ | |
BnWRI1-2 | ||||
GhWRI1 | 棉花Gossypium hirsutum | NP_001313766 | [ | |
RcWRI1 | 蓖麻Ricinus communis | NP_001310691 | [ | |
CeWRI1 | 油莎豆Cyperus esculentus | SRX1079431 | [ | |
CsWRI1A CsWRI1B CsWRI1C | 亚麻荠Camelina sativa | KY129795 KY129796 KY129797 | [ | |
GmWRI1 | 大豆Glycine max | NP_001357993 | [ | |
PaWRI1-1 PaWRI1-2 | 油梨Persea americana | MH367865 MH367866 | [ | |
SaWRI1 | 山杏Siberian apricot | AIW62177 | [ | |
TsWRI1-1 | 乌桕Triadica sebifera | SRR1653572 | [ | |
TsWRI1-2 |
1 |
Yang Y, Benning C. Functions of triacylglycerols during plant development and stress[J]. Curr Opin Biotechnol, 2018, 49: 191-198. DOI:10.1016/j.copbio.2017.09.003 .
doi: 10.1016/j.copbio.2017.09.003 |
2 | 张蓓蓓. 我国生物质原料资源及能源潜力评估[D]. 北京: 中国农业大学, 2018. |
3 |
Chapman K D, Ohlrogge J B. Compartmentation of triacylglycerol accumulation in plants[J]. J Biol Chem, 2012, 287(4): 2288-2294. DOI:10.1074/jbc.R111.290072 .
doi: 10.1074/jbc.R111.290072 |
4 |
Li N, Xu C, Li-Beisson Y, et al. Fatty acid and lipid transport in plant cells[J]. Trends Plant Sci, 2016, 21(2): 145-158. DOI:10.1016/j.tplants.2015.10.011 .
doi: 10.1016/j.tplants.2015.10.011 |
5 |
Baud S, Lepiniec L. Physiological and developmental regulation of seed oil production[J]. Prog Lipid Res, 2010, 49(3): 235-249. DOI:10.1016/j.plipres.2010.01.001 .
doi: 10.1016/j.plipres.2010.01.001 |
6 |
Zhu, Le Y, Zhang R, et al. A global survey of the gene network and key genes for oil accumulation in cultivated tetraploid cottons[J]. Plant Biotechnol J, 2021, 19(6): 1170-1182. DOI:10.1111/pbi.13538 .
doi: 10.1111/pbi.13538 |
7 |
Zhai Z, Keereetaweep J, Liu H, et al. Trehalose 6-phosphate positively regulates fatty acid synthesis by stabilizing WRINKLED1[J]. Plant Cell, 2018, 30(10): 2616-2627. DOI:10.1105/tpc.18.00521 .
doi: 10.1105/tpc.18.00521 |
8 |
To A, Joubès J, Barthole G, et al. WRINKLED transcription factors orchestrate tissue-specific regulation of fatty acid biosynthesis in Arabidopsis [J]. Plant Cell, 2012, 24(12): 5007-5023. DOI:10.1105/tpc.112.106120 .
doi: 10.1105/tpc.112.106120 |
9 |
Tang L P, Zhou C, Wang S S, et al. FUSCA3 interacting with LEAFY COTYLEDON2 controls lateral root formation through regulating YUCCA4 gene expression in Arabidopsis thaliana [J]. New Phytol, 2017, 213(4): 1740-1754. DOI:10.1111/nph.14313 .
doi: 10.1111/nph.14313 |
10 |
Marchive C, Nikovics K, To A, et al. Transcriptional regulation of fatty acid production in higher plants: Molecular bases and biotechnological outcomes[J]. Eur J Lipid Sci Technol, 2014, 116(10): 1332-1343. DOI:10.1002/ejlt.201400027 .
doi: 10.1002/ejlt.201400027 |
11 |
Wang H, Guo J, Lambert K N, et al. Developmental control of Arabidopsis seed oil biosynthesis[J]. Planta, 2007, 226(3): 773-783. DOI:10.1007/s00425-007-0524-0 .
doi: 10.1007/s00425-007-0524-0 |
12 |
Izadi-Darbandi A, Younessi-Hamzekhanlu M, Sticklen M. Metabolically engineered rice biomass and grain using genes associated with lipid pathway show high level of oil content[J]. Mol Biol Rep, 2020, 47(10): 7917-7927. DOI:10.1007/s11033-020-05837-1 .
doi: 10.1007/s11033-020-05837-1 |
13 |
Wang L, Du X, Feng Y, et al. Ectopic expression of EuWRI1, encoding a transcription factor in E. ulmoides, changes the seeds oil content in transgenic tobacco[J]. Biotechnol Prog, 2018, 34(2): 337-346. DOI:10.1002/btpr.2606 .
doi: 10.1002/btpr.2606 |
14 |
Wang X, Long Y, Yin Y, et al. New insights into the genetic networks affecting seed fatty acid concentrations in Brassica napus [J]. BMC Plant Biol, 2015, 15: 91. DOI:10.1186/s12870-015-0475-8 .
doi: 10.1186/s12870-015-0475-8 |
15 |
Weselake R J, Taylor D C, Rahman M H, et al. Increasing the flow of carbon into seed oil[J]. Biotechnol Adv, 2009, 27(6): 866-878. DOI:10.1016/j.biotechadv.2009.07.001 .
doi: 10.1016/j.biotechadv.2009.07.001 |
16 |
闵文莉, 曹喜涛, 季更生, 等. 调控脂肪酸合成植物转录因子的研究进展[J]. 发酵科技通讯, 2017, 46(2): 107-112. DOI:10.16774/j.cnki.issn.1674-2214.2017.02.008 .
doi: 10.16774/j.cnki.issn.1674-2214.2017.02.008 |
17 |
Focks N, Benning C. wrinkled1: a novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism[J]. Plant Physiol, 1998, 118(1): 91-101. DOI:10.1104/pp.118.1.91 .
doi: 10.1104/pp.118.1.91 |
18 |
Chen L, Zheng Y, Dong Z, et al. Soybean (Glycine max) WRINKLED1 transcription factor, GmWRI1a, positively regulates seed oil accumulation[J]. Mol Genet Genomics, 2018, 293(2): 401-415. DOI:10.1007/s00438-017-1393-2 .
doi: 10.1007/s00438-017-1393-2 |
19 |
Baud S, Wuillème S, To A, et al. Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis [J]. Plant J, 2009, 60(6): 933-947. DOI:10.1111/j.1365-313x.2009.04011.x .
doi: 10.1111/j.1365-313x.2009.04011.x |
20 |
Li Q, Shao J, Tang S, et al. Wrinkled1 accelerates flowering and regulates lipid homeostasis between oil accumulation and membrane lipid anabolism in Brassica napus [J]. Front Plant Sci, 2015, 6: 1015. DOI:10.3389/fpls.2015.01015 .
doi: 10.3389/fpls.2015.01015 |
21 |
Cernac A, Andre C, Hoffmann-Benning S, et al. WRI1 is required for seed germination and seedling establishment[J]. Plant Physiol, 2006, 141(2): 745-757. DOI:10.1104/pp.106.079574 .
doi: 10.1104/pp.106.079574 |
22 |
Kong Q, Ma W, Yang H, et al. The Arabidopsis WRINKLED1 transcription factor affects auxin homeostasis in roots[J]. J Exp Bot, 2017, 68(16): 4627-4634. DOI:10.1093/jxb/erx275 .
doi: 10.1093/jxb/erx275 |
23 |
Qu J, Ye J, Geng Y F, et al. Dissecting functions of KATANIN and WRINKLED1 in cotton fiber development by virus-induced gene silencing[J]. Plant Physiol, 2012, 160(2): 738-748. DOI:10.1104/pp.112.198564 .
doi: 10.1104/pp.112.198564 |
24 |
Chen B, Zhang G, Li P, et al. Multiple GmWRI1s are redundantly involved in seed filling and nodulation by regulating plastidic glycolysis, lipid biosynthesis and hormone signalling in soybean (Glycine max)[J]. Plant Biotechnol J, 2020, 18(1): 155-171. DOI:10.1111/pbi.13183 .
doi: 10.1111/pbi.13183 |
25 |
Hao S, Ma Y, Zhao S, et al. McWRI1, a transcription factor of the AP2/SHEN family, regulates the biosynthesis of the cuticular waxes on the apple fruit surface under low temperature[J]. PLoS One, 2017, 12(10): e0186996. DOI:10.1371/journal.pone.0186996 .
doi: 10.1371/journal.pone.0186996 |
26 |
Tang T, Du C, Song H, et al. Genome-wide analysis reveals the evolution and structural features of WRINKLED1 in plants[J]. Mol Genet Genomics, 2019, 294(2): 329-341. DOI:10.1007/s00438-018-1512-8 .
doi: 10.1007/s00438-018-1512-8 |
27 |
Rogozin I B, Carmel L, Csuros M, et al. Origin and evolution of spliceosomal introns[J]. Biol Direct, 2012, 7: 11. DOI:10.1186/1745-6150-7-11 .
doi: 10.1186/1745-6150-7-11 |
28 |
Shen B, Allen W B, Zheng P, et al. Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize[J]. Plant Physiol, 2010, 153(3): 980-987. DOI:10.1104/pp.110.157537 .
doi: 10.1104/pp.110.157537 |
29 |
Pouvreau B, Baud S, Vernoud V, et al. Duplicate maize Wrinkled1 transcription factors activate target genes involved in seed oil biosynthesis[J]. Plant Physiol, 2011, 156(2): 674-686. DOI:10.1104/pp.111.173641 .
doi: 10.1104/pp.111.173641 |
30 |
Bourgis F, Kilaru A, Cao X, et al. Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning[J]. PNAS, 2011, 108(30): 12527-12532. DOI:10.1073/pnas.1106502108 .
doi: 10.1073/pnas.1106502108 |
31 |
Ma W, Kong Q, Arondel V, et al. Wrinkled1, a ubiquitous regulator in oil accumulating tissues from Arabidopsis embryos to oil palm mesocarp[J]. PLoS One, 2013, 8(7): e68887. DOI:10.1371/journal.pone.0068887 .
doi: 10.1371/journal.pone.0068887 |
32 |
Yeap W C, Lee F C, Shabari Shan D K, et al. WRI1-1, ABI5, NF-YA3 and NF-YC2 increase oil biosynthesis in coordination with hormonal signaling during fruit development in oil palm[J]. Plant J, 2017, 91(1): 97-113. DOI:10.1111/tpj.13549 .
doi: 10.1111/tpj.13549 |
33 |
Grimberg Å, Carlsson A S, Marttila S, et al. Transcriptional transitions in Nicotiana benthamiana leaves upon induction of oil synthesis by WRINKLED1 homologs from diverse species and tissues[J]. BMC Plant Biol, 2015, 15: 192. DOI:10.1186/s12870-015-0579-1 .
doi: 10.1186/s12870-015-0579-1 |
34 | 杨铮. 燕麦胚乳油脂积累中转录因子WRI1和ABI3的调控作用[D]. 杨凌: 西北农林科技大学, 2020. |
35 |
Yang Y, Munz J, Cass C, et al. Ectopic expression of WRINKLED1 affects fatty acid homeostasis in Brachypodium distachyon vegetative tissues[J]. Plant Physiol, 2015, 169(3): 1836-1847. DOI:10.1104/pp.15.01236 .
doi: 10.1104/pp.15.01236 |
36 |
Sun R H, Ye R J, Gao L C, et al. Characterization and ectopic expression of CoWRI1, an AP2/EREBP Domain-Containing transcription factor from coconut (Cocos nucifera l.) endosperm, changes the seeds oil content in transgenic Arabidopsis thaliana and rice (Oryza sativa l.)[J]. Front Plant Sci, 2017, 8: 63. DOI:10.3389/fpls.2017.00063 .
doi: 10.3389/fpls.2017.00063 |
37 |
Mano, Aoyanagi, Kozaki. Atypical splicing accompanied by skipping conserved micro-exons produces unique WRINKLED1, an AP2 domain transcription factor in rice plants[J]. Plants, 2019, 8(7): 207. DOI:10.3390/plants8070207 .
doi: 10.3390/plants8070207 |
38 |
Cernac A, Benning C. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis [J]. Plant J, 2004, 40(4): 575-585. DOI:10.1111/j.1365-313x.2004.02235.x .
doi: 10.1111/j.1365-313x.2004.02235.x |
39 |
Liu J, Hua W, Zhan G, et al. Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus [J]. Plant Physiol Biochem, 2010, 48(1): 9-15. DOI:10.1016/j.plaphy.2009.09.007 .
doi: 10.1016/j.plaphy.2009.09.007 |
40 |
Zhao Y P, Liu Z J, Wang X W, et al. Molecular characterization and expression analysis of GhWRI1 in upland cotton[J]. J Plant Biol, 2018, 61(4): 186-197. DOI:10.1007/s12374-018-0049-z .
doi: 10.1007/s12374-018-0049-z |
41 |
Ji X J, Mao X, Hao Q T, et al. Splice variants of the Castor WRI1 gene upregulate fatty acid and oil biosynthesis when expressed in tobacco leaves[J]. Int J Mol Sci, 2018, 19(1): 146. DOI:10.3390/ijms19010146 .
doi: 10.3390/ijms19010146 |
42 |
Tajima D, Kaneko A, Sakamoto M, et al. Wrinkled 1 (WRI1) homologs, AP2-type transcription factors involving master regulation of seed storage oil synthesis in Castor bean (Ricinus communisL.)[J]. Am J Plant Sci, 2013, 4(2): 333-339. DOI:10.4236/ajps.2013.42044 .
doi: 10.4236/ajps.2013.42044 |
43 |
An D, Kim H, Ju S, et al. Expression of Camelina WRINKLED1 isoforms rescue the seed phenotype of the Arabidopsis wri1 mutant and increase the triacylglycerol content in tobacco leaves[J]. Front Plant Sci, 2017, 8: 34. DOI:10.3389/fpls.2017.00034 .
doi: 10.3389/fpls.2017.00034 |
44 |
Manan S, Ahmad M Z, Zhang G, et al. Soybean LEC2 regulates subsets of genes involved in controlling the biosynthesis and catabolism of seed storage substances and seed development[J]. Front Plant Sci, 2017, 8: 1604. DOI:10.3389/fpls.2017.01604 .
doi: 10.3389/fpls.2017.01604 |
45 |
Zhang D, Zhao M, Li S, et al. Plasticity and innovation of regulatory mechanisms underlying seed oil content mediated by duplicated genes in the palaeopolyploid soybean[J]. Plant J, 2017, 90(6): 1120-1133. DOI:10.1111/tpj.13533 .
doi: 10.1111/tpj.13533 |
46 |
陈欢, 邓文波, 张莹, 等. 大豆转录因子GmWRI1基因的分离及其转录激活特性分析[J]. 中国油料作物学报, 2017, 39(4): 447-453. DOI:10.7505/j.issn.1007-9084.2017.04.003 .
doi: 10.7505/j.issn.1007-9084.2017.04.003 |
47 |
葛宇, 董相书, 张腾, 等. 油梨PaWRI1和PaWRI2基因的克隆、序列分析及表达研究[J]. 中国果树, 2019(2): 37-42. DOI:10.16626/j.cnki.issn1000-8047.2019.02.008 .
doi: 10.16626/j.cnki.issn1000-8047.2019.02.008 |
48 |
Deng S, Mai Y, Shui L, et al. WRINKLED1 transcription factor orchestrates the regulation of carbon partitioning for C18: 1 (oleic acid) accumulation in Siberian apricot kernel[J]. Sci Rep, 2019, 9(1): 2693. DOI:10.1038/s41598-019-39236-9 .
doi: 10.1038/s41598-019-39236-9 |
49 |
Divi U K, Zhou X R, Wang P, et al. Deep sequencing of the fruit transcriptome and lipid accumulation in a non-seed tissue of Chinese tallow, a potential biofuel crop[J]. Plant Cell Physiol, 2016, 57(1): 125-137. DOI:10.1093/pcp/pcv181 .
doi: 10.1093/pcp/pcv181 |
50 |
Baud S, Mendoza M S, To A, et al. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis [J]. Plant J, 2007, 50(5): 825-838. DOI:10.1111/j.1365-313x.2007.03092.x .
doi: 10.1111/j.1365-313x.2007.03092.x |
51 |
Ye J, Wang C, Sun Y, et al. Overexpression of a transcription factor increases lipid content in a woody perennial Jatropha curcas [J]. Front Plant Sci, 2018, 9: 1479. DOI:10.3389/fpls.2018.01479 .
doi: 10.3389/fpls.2018.01479 |
52 |
Huang R M, Zhou Y, Zhang J P, et al. Transcriptome analysis of walnut (Juglans regia L.) embryos reveals key developmental stages and genes involved in lipid biosynthesis and polyunsaturated fatty acid metabolism[J]. J Agric Food Chem, 2021, 69(1): 377-396. DOI:10.1021/acs.jafc.0c05598 .
doi: 10.1021/acs.jafc.0c05598 |
53 |
Ma W, Kong Q, Grix M, et al. Deletion of a C-terminal intrinsically disordered region of WRINKLED1 affects its stability and enhances oil accumulation in Arabidopsis [J]. Plant J, 2015, 83(5): 864-874. DOI:10.1111/tpj.12933 .
doi: 10.1111/tpj.12933 |
54 |
Kim M J, Jang I C, Chua N H. The mediator complex MED15 subunit mediates activation of downstream lipid-related genes by the WRINKLED1 transcription factor[J]. Plant Physiol, 2016, 171(3): 1951-1964. DOI:10.1104/pp.16.00664 .
doi: 10.1104/pp.16.00664 |
55 |
Chen L, Lee J H, Weber H, et al. Arabidopsis BPM proteins function as substrate adaptors to a cullin3-based E3 ligase to affect fatty acid metabolism in plants[J]. Plant Cell, 2013, 25(6): 2253-2264. DOI:10.1105/tpc.112.107292 .
doi: 10.1105/tpc.112.107292 |
56 |
Ma W, Kong Q, Mantyla J J, et al. 14-3-3 protein mediates plant seed oil biosynthesis through interaction with AtWRI1[J]. Plant J, 2016, 88(2): 228-235. DOI:10.1111/tpj.13244 .
doi: 10.1111/tpj.13244 |
57 |
Huang R, Liu M, Gong G, et al. The Pumilio RNA-binding protein APUM24 regulates seed maturation by fine-tuning the BPM-WRI1 module in Arabidopsis [J]. J Integr Plant Biol, 2021, 63(7): 1240-1259. DOI:10.1111/jipb.13092 .
doi: 10.1111/jipb.13092 |
58 |
Zhai Z, Liu H, Shanklin J. Phosphorylation of WRINKLED1 by KIN10 results in its proteasomal degradation, providing a link between energy homeostasis and lipid biosynthesis[J]. Plant Cell, 2017, 29(4): 871-889. DOI:10.1105/tpc.17.00019 .
doi: 10.1105/tpc.17.00019 |
59 |
唐跃辉, 刘坤, 赵君苇, 等. 麻疯树JcWRI1基因启动子克隆及功能分析[J]. 河南农业科学, 2017, 46(10): 110-115. DOI:10.15933/j.cnki.1004-3268.2017.10.020 .
doi: 10.15933/j.cnki.1004-3268.2017.10.020 |
60 | 邵宇鹏, 杨明明, 包格格, 等. 大豆GmWRI1a基因启动子克隆及其功能分析[J]. 中国油料作物学报, 2019, 41: 517-523. |
61 |
Kong Q, Ma W. WRINKLED1 transcription factor: How much do we know about its regulatory mechanism? [J]. Plant Sci, 2018, 272: 153-156. DOI:10.1016/j.plantsci.2018.04.013 .
doi: 10.1016/j.plantsci.2018.04.013 |
62 |
Kong Q, Yuan L, Ma W. WRINKLED1, a “master regulator” in transcriptional control of plant oil biosynthesis[J]. Plants, 2019, 8(7): 238. DOI:10.3390/plants8070238 .
doi: 10.3390/plants8070238 |
63 |
Ruuska S A, Girke T, Benning C, et al. Contrapuntal networks of gene expression during Arabidopsis seed filling[J]. Plant Cell, 2002, 14(6): 1191-1206. DOI:10.1105/tpc.000877 .
doi: 10.1105/tpc.000877 |
64 |
Yang Z, Liu X L, Li N, et al. WRINKLED1 homologs highly and functionally express in oil-rich endosperms of oat and Castor [J]. Plant Sci, 2019, 287: 110193. DOI:10.1016/j.plantsci.2019.110193 .
doi: 10.1016/j.plantsci.2019.110193 |
65 |
Ji H, Liu D, Yang Z. High oil accumulation in Tuber of yellow nutsedge compared to purple nutsedge is associated with more abundant expression of genes involved in fatty acid synthesis and triacylglycerol storage[J]. Biotechnol Biofuels, 2021, 14(1): 54. DOI:10.1186/s13068-021-01909-x .
doi: 10.1186/s13068-021-01909-x |
66 |
Wu B, Ruan C, Han P, et al. Comparative transcriptomic analysis of high- and low-oil Camellia oleifera reveals a coordinated mechanism for the regulation of upstream and downstream multigenes for high oleic acid accumulation[J]. 3 Biotech, 2019, 9(7): 257. DOI:10.1007/s13205-019-1792-7 .
doi: 10.1007/s13205-019-1792-7 |
67 |
Baud S, Graham I A. A spatiotemporal analysis of enzymatic activities associated with carbon metabolism in wild-type and mutant embryos of Arabidopsis using in situ histochemistry[J]. Plant J, 2006, 46(1): 155-169. DOI:10.1111/j.1365-313x.2006.02682.x .
doi: 10.1111/j.1365-313x.2006.02682.x |
68 |
Zang X, Pei W, Wu M, et al. Genome-scale analysis of the WRI-like family in Gossypium and functional characterization of GhWRI1a controlling triacylglycerol content[J]. Front Plant Sci, 2018, 9: 1516. DOI:10.3389/fpls.2018.01516 .
doi: 10.3389/fpls.2018.01516 |
69 |
Liu Z J, Zhao Y P, Liang W, et al. Over-expression of transcription factor GhWRI1 in upland cotton[J]. Biol Plant, 2018, 62(2): 335-342. DOI:10.1007/s10535-018-0777-4 .
doi: 10.1007/s10535-018-0777-4 |
70 |
Huang R, Liu Z, Xing M, et al. Heat stress suppresses Brassica napus seed oil accumulation by inhibition of photosynthesis and BnWRI1 pathway[J]. Plant Cell Physiol, 2019, 60(7): 1457-1470. DOI:10.1093/pcp/pcz052 .
doi: 10.1093/pcp/pcz052 |
71 |
Vogel P A, Bayon de Noyer S, Park H, et al. Expression of the ArabidopsisWRINKLED1 transcription factor leads to higher accumulation of palmitate in soybean seed[J]. Plant Biotechnol J, 2019, 17(7): 1369-1379. DOI:10.1111/pbi.13061 .
doi: 10.1111/pbi.13061 |
72 |
Manan S, Chen B, She G, et al. Transport and transcriptional regulation of oil production in plants[J]. Crit Rev Biotechnol, 2017, 37(5): 641-655. DOI:10.1080/07388551.2016.1212185 .
doi: 10.1080/07388551.2016.1212185 |
73 |
Lotan T, Ohto M, Yee K M, et al. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells[J]. Cell, 1998, 93(7): 1195-1205. DOI:10.1016/s0092-8674(00)81463-4 .
doi: 10.1016/s0092-8674(00)81463-4 |
74 |
Casson S A, Lindsey K. The turnip mutant of Arabidopsis reveals that LEAFY COTYLEDON1 expression mediates the effects of auxin and sugars to promote embryonic cell identity[J]. Plant Physiol, 2006, 142(2): 526-541. DOI:10.1104/pp.106.080895 .
doi: 10.1104/pp.106.080895 |
75 |
Mu J, Tan H, Zheng Q, et al. LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis [J]. Plant Physiol, 2008, 148(2): 1042-1054. DOI:10.1104/pp.108.126342 .
doi: 10.1104/pp.108.126342 |
76 |
Zheng Y, Chen C, Liang Y, et al. Genome-wide association analysis of the lipid and fatty acid metabolism regulatory network in the mesocarp of oil palm (Elaeis guineensis Jacq.) based on small noncoding RNA sequencing[J]. Tree Physiol, 2019, 39(3): 356-371. DOI:10.1093/treephys/tpy091 .
doi: 10.1093/treephys/tpy091 |
77 |
Pelletier J M, Kwong R W, Park S, et al. LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development[J]. PNAS, 2017, 114(32): E6710-E6719. DOI:10.1073/pnas.1707957114 .
doi: 10.1073/pnas.1707957114 |
78 |
Stone S L, Kwong L W, Yee K M, et al. LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development[J]. PNAS, 2001, 98(20): 11806-11811. DOI:10.1073/pnas.201413498 .
doi: 10.1073/pnas.201413498 |
79 |
Kim H U, Jung S J, Lee K R, et al. Ectopic overexpression of Castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues[J]. FEBS Open Bio, 2013, 4: 25-32. DOI:10.1016/j.fob.2013.11.003 .
doi: 10.1016/j.fob.2013.11.003 |
80 |
Baumlein H, Misera S, Luerssen H, et al. The FUS3 gene of Arabidopsis thaliana is a regulator of gene expression during late embryogenesis[J]. Plant J, 1994, 6(3): 379-387. DOI:10.1046/j.1365-313x.1994.06030379.x .
doi: 10.1046/j.1365-313x.1994.06030379.x |
81 |
Yamamoto A, Kagaya Y, Usui H, et al. Diverse roles and mechanisms of gene regulation by the Arabidopsis seed maturation master regulator FUS3 revealed by microarray analysis[J]. Plant Cell Physiol, 2010, 51(12): 2031-2046. DOI:10.1093/pcp/pcq162 .
doi: 10.1093/pcp/pcq162 |
82 |
Wang F, Perry S E. Identification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development[J]. Plant Physiol, 2013, 161(3): 1251-1264. DOI:10.1104/pp.112.212282 .
doi: 10.1104/pp.112.212282 |
83 |
Fornari M, Calvenzani V, Masiero S, et al. The Arabidopsis NF-YA3 and NF-YA8 genes are functionally redundant and are required in early embryogenesis[J]. PLoS One, 2013, 8(11): e82043. DOI:10.1371/journal.pone.0082043 .
doi: 10.1371/journal.pone.0082043 |
84 |
Li D, Jin C, Duan S, et al. MYB89 transcription factor represses seed oil accumulation[J]. Plant Physiol, 2017, 173(2): 1211-1225. DOI:10.1104/pp.16.01634 .
doi: 10.1104/pp.16.01634 |
85 |
Snell P, Grimberg Å, Carlsson A S, et al. WRINKLED1 is subject to evolutionary conserved negative autoregulation[J]. Front Plant Sci, 2019, 10: 387. DOI:10.3389/fpls.2019.00387 .
doi: 10.3389/fpls.2019.00387 |
86 |
Hafner A, Bulyk M L, Jambhekar A, et al. The multiple mechanisms that regulate p53 activity and cell fate[J]. Nat Rev Mol Cell Biol, 2019, 20(4): 199-210. DOI:10.1038/s41580-019-0110-x .
doi: 10.1038/s41580-019-0110-x |
87 |
Pireyre M, Burow M. Regulation of MYB and bHLH transcription factors: a glance at the protein level[J]. Mol Plant, 2015, 8(3): 378-388. DOI:10.1016/j.molp.2014.11.022 .
doi: 10.1016/j.molp.2014.11.022 |
88 |
Mouchiroud L, Eichner L J, Shaw R J, et al. Transcriptional coregulators: fine-tuning metabolism[J]. Cell Metab, 2014, 20(1): 26-40. DOI:10.1016/j.cmet.2014.03.027 .
doi: 10.1016/j.cmet.2014.03.027 |
89 |
Stevers L M, Sijbesma E, Botta M, et al. Modulators of 14-3-3 protein-protein interactions[J]. J Med Chem, 2018, 61(9): 3755-3778. DOI:10.1021/acs.jmedchem.7b00574 .
doi: 10.1021/acs.jmedchem.7b00574 |
90 |
Kong Q, Ma W. WRINKLED1 as a novel 14-3-3 client: function of 14-3-3 proteins in plant lipid metabolism[J]. Plant Signal Behav, 2018, 13(8): e1482176. DOI:10.1080/15592324.2018.1482176 .
doi: 10.1080/15592324.2018.1482176 |
91 | 尹娜, 王新娟, 尚永丰. 中介因子复合体在基因转录调控中的作用[J]. 生理科学进展, 2003, 34(4): 298-302. |
92 |
Weber H, Bernhardt A, Dieterle M, et al. Arabidopsis AtCUL3a and AtCUL3b form complexes with members of the BTB/POZ-MATH protein family[J]. Plant Physiol, 2005, 137(1): 83-93. DOI:10.1104/pp.104.052654 .
doi: 10.1104/pp.104.052654 |
93 |
刘静, 李亚超, 周梦岩, 等. 植物蛋白质翻译后修饰组学研究进展[J]. 生物技术通报, 2021, 37(1): 67-76. DOI:10.13560/j.cnki.biotech.bull.1985.2020-0946 .
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0946 |
94 |
Baena-González E, Rolland F, Thevelein J M, et al. A central integrator of transcription networks in plant stress and energy signalling[J]. Nature, 2007, 448(7156): 938-942. DOI:10.1038/nature06069 .
doi: 10.1038/nature06069 |
95 |
Kong Q, Yang Y, Low P M, et al. The function of the WRI1-TCP4 regulatory module in lipid biosynthesis[J]. Plant Signal Behav, 2020, 15(11): 1812878. DOI:10.1080/15592324.2020.1812878 .
doi: 10.1080/15592324.2020.1812878 |
96 |
Kong Q, Singh S K, Mantyla J J, et al. TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR4 interacts with WRINKLED1 to mediate seed oil biosynthesis[J]. Plant Physiol, 2020, 184(2): 658-665. DOI:10.1104/pp.20.00547 .
doi: 10.1104/pp.20.00547 |
97 |
Maeo K, Tokuda T, Ayame A, et al. An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis[J]. Plant J, 2009, 60(3): 476-487. DOI:10.1111/j.1365-313x.2009.03967.x .
doi: 10.1111/j.1365-313x.2009.03967.x |
98 |
Kazaz S, Barthole G, Domergue F, et al. Differential activation of partially redundant Δ9 stearoyl-ACP desaturase genes is critical for Omega-9 monounsaturated fatty acid biosynthesis during seed development in Arabidopsis [J]. Plant Cell, 2020, 32(11): 3613-3637. DOI:10.1105/tpc.20.00554 .
doi: 10.1105/tpc.20.00554 |
99 |
Liu H, Zhai Z, Kuczynski K, et al. WRINKLED1 regulates BIOTIN ATTACHMENT DOMAIN-CONTAINING proteins that inhibit fatty acid synthesis[J]. Plant Physiol, 2019, 181(1): 55-62. DOI:10.1104/pp.19.00587 .
doi: 10.1104/pp.19.00587 |
100 |
Zhang B H, Pan X P, Cobb G P, et al. Plant microRNA: a small regulatory molecule with big impact[J]. Dev Biol, 2006, 289(1): 3-16. DOI:10.1016/j.ydbio.2005.10.036 .
doi: 10.1016/j.ydbio.2005.10.036 |
101 |
Xie F L, Frazier T P, Zhang B H. Identification and characterization of microRNAs and their targets in the bioenergy plant switchgrass (Panicum virgatum)[J]. Planta, 2010, 232(2): 417-434. DOI:10.1007/s00425-010-1182-1 .
doi: 10.1007/s00425-010-1182-1 |
102 |
Dhandapani V, Ramchiary N, Paul P, et al. Identification of potential microRNAs and their targets in Brassica rapa L[J]. Mol Cells, 2011, 32(1): 21-37. DOI:10.1007/s10059-011-2313-7 .
doi: 10.1007/s10059-011-2313-7 |
[1] | 韩妮莎, 丁硕, 郑月萍, 魏琳燕, 柯星星, 刘宏波, 刘娟, 郑志富. 植物甘油脂合成途径第一步酰化反应的研究进展[J]. 中国油料作物学报, 2022, 44(4): 699-711. |
[2] | 王越, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜盐胁迫响应miRNA及其靶基因鉴定[J]. 中国油料作物学报, 2022, 44(1): 103-115. |
[3] | 位文倩, 孙昕, 黄峰, 李鹏飞, 李盟. 转录组揭示自养和混合培养栅藻油脂代谢途径差异[J]. 中国油料作物学报, 2022, 44(1): 130-137. |
[4] | 范世航, 刘念, 华玮. 油料作物油脂合成调控研究进展[J]. 中国油料作物学报, 2021, 43(3): 361-. |
[5] | 杨莎, 赵路颖, 宋珊珊, 李新国, 万书波. 5-氨基乙酰丙酸调控花生耐盐性的生理机制研究[J]. 中国油料作物学报, 2020, 42(6): 1035-. |
[6] | 刘文文, 王建国, 万书波, 彭振英, 李新国. 花生荚果发育及其调控研究进展[J]. 中国油料作物学报, 2020, 42(6): 940-. |
[7] | 龚静, 路妍, 宋阳, 景岚. 向日葵锈病抗性相关microRNA的挖掘及其靶基因预测[J]. 中国油料作物学报, 2020, 42(4): 687-. |
[8] | 覃佐剑, 吴宗远, 涂行浩, 陈洪, 魏芳. 基于液相色谱-串联质谱法分析不同植物油经加热处理前后氧化脂肪酸的变化[J]. 中国油料作物学报, 2020, 42(3): 364-. |
[9] | 郑潇潇, 朱瑶瑶, 梁华兵, 詹杰鹏, 师家勤, 王新发. 甘蓝型油菜尿卟啉原Ⅲ合成酶基因BnHemd 的克隆和功能分析[J]. 中国油料作物学报, 2020, 42(3): 380-. |
[10] | 郭婷婷, 万楚筠, 黄凤洪, 陈思涵 . 亚临界流体萃取油脂及微量成分研究进展[J]. 中国油料作物学报, 2020, 42(1): 154-. |
[11] | 乔蕤,胡娜§,周菁,郑佳新,汪福霞,肖靖萍,汪军成,姚立蓉,王化俊* . 西北旱区盐生植物盐生草籽营养成分分析与评价[J]. 中国油料作物学报, 2019, 41(6): 956-. |
[12] | 岳秀宏,李祥宇,刘鹏阳,陆姝欢,万霞* . 基于简便快速的尼罗红荧光染色法建立高油脂裂殖壶菌筛选方法[J]. 中国油料作物学报, 2019, 41(5): 796-. |
[13] | 邵宇鹏,杨明明,包格格,孙英楠,杨强,李文滨,王志坤*. 大豆GmWRI1a 基因启动子克隆及其功能分析[J]. 中国油料作物学报, 2019, 41(4): 517-. |
[14] | 刘修杰,陈 莉,郭 晨,蔡宇鹏,孙 石,韩天富,侯文胜*. 外施硫酸根和蛋氨酸对大豆胱硫醚-V-合成酶基因GmCGSG表达的影响[J]. 中国油料作物学报, 2019, 41(1): 10-. |
[15] | 郝夏晖,黄凤洪,龚阳敏* . 产油微藻基因组编辑技术研究进展[J]. 中国油料作物学报, 2019, 41(1): 144-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||