
花生籽仁含油量近红外模型的构建及其应用
纪红昌, 邱晓臣, 柳文浩, 胡畅丽, 孔铭, 胡晓辉, 黄建斌, 杨雪, 唐艳艳, 张晓军, 王晶珊, 乔利仙
中国油料作物学报 ›› 2022, Vol. 44 ›› Issue (5) : 1089-1097.
花生籽仁含油量近红外模型的构建及其应用
Construction and application of near infrared ray model for oil content prediction in peanut kernel
花生(Arachis hypogaea L.)籽仁含油量是花生品质评价的重要指标,建立快速高效的含油量检测方法,对加快高油花生品种选育意义重大。本研究选用高油亲本宇花14(含油量59.32%)与低油亲本LOP215(含油量48.97%)杂交构建的RIL群体为建模材料,使用Thermo公司(美国)生产的Antaris II型傅立叶变换近红外光谱分析仪对229份样品籽仁进行光谱采集,随后测定籽仁含油量。利用偏最小二乘法(partial least squares, PLS)构建花生籽仁含油量近红外定标模型,该模型的内部验证均方差(root mean square error of cross validation, RMSECV)为0.885,相关系数R2=0.9147。选用未参与建模的21份花生材料对该模型进行外部验证,模型预测值和化学测定值的决定系数R2=0.9492,表明该模型可适用于花生籽仁含油量检测。利用该模型对宇花14与LOP215杂交后代群体进行筛选,获得含油量超过55%的优良株系21个,含油量低于48%的株系9个,可为花生高低含油量品种选育提供种质材料。
Kernel oil content is an important index for peanut quality evaluation. It is of great significance to establish a rapid and efficient oil content detection method for accelerating the breeding of high oil peanut varieties. The RIL population constructed by crossing high oil parent Yuhua 14 with oil content of 59.32% and LOP215 with oil content of 48.97% was used as the modeling material, and the spectra of 229 samples were collected by using Antaris II type fourier transform near infrared spectrometer produced by thermo company (USA), and then the oil content of seed kernel was determined. The partial least squares (PLS) method was used to construct the near infrared calibration model of peanut kernel oil content. The root mean square error of cross validation (RMSECV) of the model was 0.885, and the correlation coefficient R2=0.9147. Twenty-one peanut materials not involved in the modeling were selected for external validation of the model, and the coefficient of determination of predicted value and chemical determination value of the model R2=0.9492, indicating that the model can be applied to determination of oil content in peanut kernels. Twenty-one lines with oil content more than 55% and 9 lines with oil content less than 48% were obtained by screening from the progeny population of crossing between Yuhua 14 and LOP215, which can provide germplasm materials for breeding high or low oil content peanut varieties.
花生 / 籽仁 / 含油量 / 近红外模型 / RIL群体 {{custom_keyword}} /
peanut / kernels / oil content / near infrared ray model / RIL population {{custom_keyword}} /
表1 测试花生样品编号以及含油量化学测定值Table 1 Number of peanut sample and oil content determined by chemical method |
序号 Number | 含油量 Oil content /% | 序号 Number | 含油量 Oil content /% | 序号 Number | 含油量 Oil content /% | 序号 Number | 含油量 Oil content /% | 序号 Number | 含油量 Oil content /% |
---|---|---|---|---|---|---|---|---|---|
1 | 55.15 | 47 | 49.37 | 93 | 44.48 | 139 | 50.90 | 185 | 50.04 |
2 | 50.46 | 48 | 54.21 | 94 | 45.32 | 140 | 51.14 | 186 | 50.80 |
3 | 47.18 | 49 | 50.05 | 95 | 47.00 | 141 | 52.95 | 187 | 53.53 |
4 | 55.10 | 50 | 46.40 | 96 | 51.19 | 142 | 53.05 | 188 | 53.40 |
5 | 50.35 | 51 | 53.37 | 97 | 48.85 | 143 | 50.79 | 189 | 48.08 |
6 | 54.61 | 52 | 54.06 | 98 | 48.65 | 144 | 54.44 | 190 | 53.00 |
7 | 48.52 | 53 | 47.98 | 99 | 40.93 | 145 | 51.16 | 191 | 55.91 |
8 | 48.51 | 54 | 50.21 | 100 | 53.03 | 146 | 56.76 | 192 | 53.07 |
9 | 52.46 | 55 | 47.83 | 101 | 56.03 | 147 | 54.15 | 193 | 51.27 |
10 | 52.54 | 56 | 49.97 | 102 | 54.39 | 148 | 52.23 | 194 | 44.30 |
11 | 52.67 | 57 | 52.78 | 103 | 52.55 | 149 | 49.52 | 195 | 49.45 |
12 | 50.06 | 58 | 51.55 | 104 | 50.93 | 150 | 48.63 | 196 | 50.52 |
13 | 49.78 | 59 | 51.78 | 105 | 53.00 | 151 | 51.45 | 197 | 51.35 |
14 | 50.81 | 60 | 48.26 | 106 | 50.37 | 152 | 47.03 | 198 | 51.16 |
15 | 53.97 | 61 | 48.00 | 107 | 49.20 | 153 | 54.78 | 199 | 53.68 |
16 | 50.84 | 62 | 52.41 | 108 | 52.76 | 154 | 48.81 | 200 | 54.47 |
17 | 53.24 | 63 | 55.83 | 109 | 52.06 | 155 | 50.74 | 201 | 52.97 |
18 | 52.18 | 64 | 53.32 | 110 | 50.60 | 156 | 54.33 | 202 | 49.72 |
19 | 50.88 | 65 | 54.61 | 111 | 52.06 | 157 | 51.36 | 203 | 52.03 |
20 | 53.83 | 66 | 51.90 | 112 | 49.90 | 158 | 47.07 | 204 | 49.69 |
21 | 53.17 | 67 | 56.27 | 113 | 51.50 | 159 | 53.29 | 205 | 48.09 |
22 | 52.00 | 68 | 49.54 | 114 | 51.53 | 160 | 51.59 | 206 | 56.54 |
23 | 53.70 | 69 | 49.27 | 115 | 54.64 | 161 | 53.47 | 207 | 60.01 |
24 | 55.68 | 70 | 50.86 | 116 | 54.64 | 162 | 50.85 | 208 | 50.34 |
25 | 51.28 | 71 | 54.68 | 117 | 48.87 | 163 | 46.99 | 209 | 53.10 |
26 | 43.98 | 72 | 45.63 | 118 | 55.12 | 164 | 43.33 | 210 | 51.23 |
27 | 46.66 | 73 | 48.20 | 119 | 49.91 | 165 | 49.85 | 211 | 52.67 |
28 | 55.24 | 74 | 48.63 | 120 | 54.83 | 166 | 52.91 | 212 | 49.43 |
29 | 48.97 | 75 | 55.05 | 121 | 54.96 | 167 | 50.38 | 213 | 53.70 |
30 | 46.25 | 76 | 51.33 | 122 | 51.15 | 168 | 51.49 | 214 | 55.57 |
31 | 54.64 | 77 | 54.33 | 123 | 52.26 | 169 | 51.52 | 215 | 55.04 |
32 | 52.86 | 78 | 51.98 | 124 | 55.61 | 170 | 50.06 | 216 | 53.98 |
33 | 55.05 | 79 | 51.85 | 125 | 55.30 | 171 | 51.82 | 217 | 47.75 |
34 | 54.95 | 80 | 41.93 | 126 | 52.62 | 172 | 54.54 | 218 | 53.92 |
35 | 51.31 | 81 | 46.94 | 127 | 51.58 | 173 | 54.27 | 219 | 53.03 |
36 | 49.39 | 82 | 44.45 | 128 | 51.81 | 174 | 52.87 | 220 | 53.40 |
37 | 54.01 | 83 | 54.99 | 129 | 49.18 | 175 | 53.32 | 221 | 49.18 |
38 | 49.87 | 84 | 44.06 | 130 | 50.94 | 176 | 52.51 | 222 | 55.23 |
39 | 53.64 | 85 | 49.59 | 131 | 54.13 | 177 | 58.28 | 223 | 48.12 |
40 | 57.43 | 86 | 47.83 | 132 | 44.22 | 178 | 49.96 | 224 | 50.94 |
41 | 53.65 | 87 | 43.72 | 133 | 51.14 | 179 | 53.62 | 225 | 54.56 |
42 | 46.17 | 88 | 43.63 | 134 | 44.51 | 180 | 50.72 | 226 | 47.07 |
43 | 44.61 | 89 | 48.71 | 135 | 52.24 | 181 | 51.93 | 227 | 53.83 |
44 | 47.06 | 90 | 46.97 | 136 | 53.25 | 182 | 54.50 | 228 | 47.33 |
45 | 50.66 | 91 | 48.24 | 137 | 55.08 | 183 | 53.18 | 229 | 50.17 |
46 | 46.56 | 92 | 46.69 | 138 | 53.57 | 184 | 52.17 |
表2 测试样品模型预测值与化学测定值比较Table 2 Comparison of predicted value of test sample model and chemical determined value |
序号Number | 预测值 Predicted value /% | 化学测定值 Chemical determined value /% | 绝对误差 Absolute error | 相对误差 Relative deviation /% |
---|---|---|---|---|
A1 | 49.99 | 50.95 | 0.96 | 1.92 |
A2 | 48.71 | 49.21 | 0.50 | 1.02 |
A3 | 54.36 | 54.53 | 0.17 | 0.31 |
A4 | 51.89 | 52.60 | 0.71 | 1.36 |
A5 | 53.27 | 52.82 | 0.45 | 0.84 |
A6 | 51.54 | 50.96 | 0.58 | 1.12 |
A7 | 50.86 | 50.46 | 0.40 | 0.78 |
A8 | 51.10 | 50.91 | 0.19 | 0.37 |
A9 | 58.35 | 57.97 | 0.38 | 0.65 |
A10 | 48.43 | 49.14 | 0.71 | 1.46 |
A11 | 53.42 | 54.29 | 0.87 | 1.62 |
A12 | 50.30 | 51.06 | 0.76 | 1.51 |
A13 | 51.39 | 50.96 | 0.43 | 0.83 |
A14 | 51.27 | 50.89 | 0.38 | 0.74 |
A15 | 52.02 | 51.74 | 0.28 | 0.53 |
A16 | 54.58 | 54.07 | 0.51 | 0.93 |
A17 | 51.60 | 52.29 | 0.69 | 1.33 |
A18 | 47.29 | 48.07 | 0.78 | 1.64 |
A19 | 50.47 | 49.92 | 0.55 | 1.08 |
A20 | 49.15 | 50.07 | 0.92 | 1.87 |
A21 | 48.10 | 48.55 | 0.45 | 0.93 |
表3 利用近红外模型筛选出的高油材料和低油材料Table 3 high oil and low oil materials selected by using near infrared model |
序号 Number | 油酸含量 Oleic acid content /% | 油含量 Oil content /% | 序号 Number | 油酸含量 Oleic acid content /% | 油含量 Oil content /% | 序号 Number | 油酸含量 Oleic acid content /% | 油含量 Oil content /% |
---|---|---|---|---|---|---|---|---|
B1 | 79.53 | 58.37 | B11 | 76.12 | 55.82 | B21 | 77.22 | 55.04 |
B2 | 78.14 | 57.68 | B12 | 76.61 | 55.76 | B22 | 76.53 | 47.99 |
B3 | 79.66 | 57.17 | B13 | 81.24 | 55.61 | B23 | 76.30 | 47.98 |
B4 | 77.91 | 57.00 | B14 | 76.00 | 55.43 | B24 | 75.41 | 47.85 |
B5 | 77.85 | 56.98 | B15 | 80.04 | 55.42 | B25 | 78.54 | 47.58 |
B6 | 77.66 | 56.84 | B16 | 77.19 | 55.42 | B26 | 76.28 | 47.41 |
B7 | 77.71 | 56.36 | B17 | 75.52 | 55.36 | B27 | 77.96 | 47.28 |
B8 | 76.37 | 56.32 | B18 | 76.97 | 55.22 | B28 | 77.96 | 47.28 |
B9 | 75.22 | 56.29 | B19 | 76.89 | 55.20 | B29 | 75.45 | 47.26 |
B10 | 77.02 | 56.01 | B20 | 76.36 | 55.07 | B30 | 75.37 | 45.37 |
1 |
张忠信, 韩锁义, 徐静. 高油高产花生品种及其应用前景[J]. 种业导刊, 2009(12): 27-28.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
董文召, 汤丰收. 我国花生优质育种的研究进展及育种策略探讨[J]. 中国农学通报, 2002, 18(2): 77-79. DOI:10.3969/j.issn.1000-6850.2002.02.026 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
柴玉华, 谭克竹. 基于近红外分析技术检测大豆脂肪酸含量的研究[J]. 农业工程学报, 2007, 23(1): 238-241. DOI:10.3321/j.issn: 1002-6819.2007.01.046 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
李勇, 魏益民, 王锋. 影响近红外光谱分析结果准确性的因素[J]. 核农学报, 2005, 19(3): 236-240. DOI:10.3969/j.issn.1000-8551.2005.03.017 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
王多加, 周向阳, 金同铭, 等. 近红外光谱检测技术在农业和食品分析上的应用[J]. 光谱学与光谱分析, 2004(4), 24: 447-450.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
褚小立, 袁洪福, 陆婉珍. 近红外分析中光谱预处理及波长选择方法进展与应用[J]. 化学进展, 2004, 16(4): 528-542. DOI:10.3321/j.issn: 1005-281X.2004.04.008 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
赵强. 近红外光谱分析定标技术的研究[D]. 广州: 暨南大学, 2006.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
梁晓艳, 吉海彦. 近红外光谱技术在农作物品质分析方面的应用[J]. 中国农学通报, 2006, 22(1): 366-371. DOI:10.3969/j.issn.1000-6850.2006.01.099 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
温冰消, 刘卫国, 李虹桥, 等. 基于近红外法的鲜食大豆品质快速分析技术[J]. 分子植物育种, 2018, 16(12): 4062-4067. DOI:10.13271/j.mpb.016.004062 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
李英, 陈浩, 周游, 等. 油菜品质近红外检测模型建立及研究[J]. 陕西农业科学, 2015, 61(11): 37-38. DOI:10.3969/j.issn.0488-5368.2015.11.010 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
禹山林, 朱雨杰, 闵平, 等. 傅立叶近红外漫反射非破坏性测定花生种子蛋白质及含油量[J]. 花生学报, 2003, 32(z1): 138-143. DOI:10.3969/j.issn.1002-4093.2003.z1.031 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
商连光, 李军会, 王玉美, 等. 棉籽油分含量近红外无损检测分析模型与应用[J]. 光谱学与光谱分析, 2015, 35(3): 609-612. DOI:10.3964/j.issn.1000-0593(2015)03-0609-04 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
陈斌, 卢丙, 陆道礼. 基于微型近红外光谱仪的油菜籽含油率模型参数优化研究[J]. 现代食品科技, 2015, 31(8): 286-292, 267. DOI:10.13982/j.mfst.1673-9078.2015.8.045 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
孙潇鹏, 刘灿灿, 陆华忠, 等. 基于近红外透射光谱与机器视觉的蜜柚汁胞粒化分级检测[J]. 食品科学技术学报, 2021, 39(1): 37-45. DOI:10.12301/j.issn.2095-6002.2021.01.004 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
刘盼, 张艳欣, 黎冬华, 等. 基于近红外模型的芝麻核心种质油脂和蛋白质含量变异分析[J]. 2016, 38(6): 722-729. DOI:10.7505/j.issn.1007-9084.2016.06.003 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
李培武,陈小媚,张文,等. 油料种籽含油量的测定 残余法 [S]. 中华人民共和国行业标准,NY/T 1285—2007.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
雷永, 王志慧, 淮东欣, 等. 花生籽仁蔗糖含量近红外模型构建及在高糖品种培育中的应用[J]. 作物学报, 2021, 47(2): 332-341.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
宋丽华, 刘立峰, 陈焕英, 等. 花生籽仁蛋白质含量近红外光谱模型的建立[J]. 中国农学通报, 2011, 27(15): 85-89.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |