
水培条件下花生品种铁素吸收/活化能力鉴定方法
张静, 骆璐, 刘风珍, 贾红霞, 刘娟, 谭震, 张昆, 万勇善
中国油料作物学报 ›› 2024, Vol. 46 ›› Issue (2) : 411-419.
水培条件下花生品种铁素吸收/活化能力鉴定方法
Identification method of ferritin absorption/activation ability of peanut (Arachis hypogaea L.) varieties under hydroponic condition
为建立快速鉴定不同花生品种铁素吸收、活化能力的方法,以耐缺铁花生品种农大818、鲁花11、山花11号,铁敏感花生品种鲁花12、ICG6848、白沙1016为材料进行水培试验。以缺铁营养液培养花生幼苗,观察并记录在缺铁环境中幼苗新叶黄化时间;待幼苗新叶全部黄化后恢复供铁,分别以20 µmol/LFeSO4处理2 d/ 4 d,25 µmol/L FeSO4处理2 d/ 3 d,30 µmol/L FeSO4处理1 d/ 2 d/ 4 d,通过测定叶绿素值增加量(ΔSPAD)、干物重、铁吸收量等指标以鉴定花生铁素吸收能力;以25 µmol/L Fe2(SO4)3处理2 d/ 4 d,30 µmol/L Fe2(SO4)3处理2 d/ 3 d,35 µmol/L Fe2(SO4)3处理1 d/ 2 d/ 4 d以鉴定花生铁素活化能力。结果表明,所有花生品种的幼苗在缺铁处理第10 d均出现了黄化现象,此时用25 µmol/LFeSO4恢复供铁处理2 d后,耐缺铁品种和铁敏感品种间ΔSPAD、单株铁吸收量差异显著;用30 µmol/L Fe2(SO4)3处理2 d后,耐缺铁品种和铁敏感品种间ΔSPAD、单株铁活化量也有显著差异。因此可在缺铁黄化后补充25 µmol/L FeSO4或30 µmol/L Fe2(SO4)3,用处理2 d时花生幼苗ΔSPAD、单株铁吸收量或单株活化量作为评价花生铁素吸收/活化能力的指标。
In order to establish a rapid method to identify the absorption and activation ability of iron in different peanuts, the iron deficiency cultivars Nongda 818, Luhua 11, Shanhua 11, and the iron sensitive cultivars Luhua 12, ICG6848, and Baisha 1016 were employd in iron deficiency nutrient solution instead of soil. The yellowing time of new leaves in iron deficiency environment was recorded. After the new leaves of all peanut seedlings turned yellow, the iron supply was resumed. The seedlings were treated with 20 µmol/L FeSO4 for 2 d and 4 d, 25 µmol/L FeSO4 for 2 d and 3 d, and 30 µmol/L FeSO4 for 1 d, 2 d and 4 d, the increase of chlorophyll value (ΔSPAD), dry weight and iron uptake were measured to identify the iron uptake capacity. The iron activation ability of peanut was evaluated at 25 µmol/L Fe2(SO4)3 for 2 d and 4 d, 30 µmol/L Fe2(SO4)3 for 2 and 3 d, and 35 µmol/L Fe2(SO4)3 for 1 day, 2 d and 4 d. Results showed that the seedlings of all peanuts showed yellowing on the 10th day of iron deficiency treatment. Then, 25 µmol/L FeSO4 was used to iron supply for 2 days, which led to increase of SPAD value, while iron uptake per plant were significantly different between iron deficiency tolerant and iron sensitive cultivars. When treated with 30 µmol/L Fe2(SO4)3 for 2 days, the increase of SPAD value and iron activation per plant were also significantly different between the deficient tolerant and sensitive cultivars. Therefore, considerting peanut iron absorption/activation ability,the increase of seedling SPAD, iron uptake per plant and/or activation per plant could be used as indicators after iron supply (25 µmol/L FeSO4 or 30 µmol/L Fe2(SO4)3 for 2 days) when seedlings have been etiolated.
花生 / 铁 / 水培 / 吸收 / 活化 {{custom_keyword}} /
peanut / iron / hydroponics / absorption / activation {{custom_keyword}} /
表1 恢复供铁处理浓度及时间Table 1 Recovery iron treatment concentration and time |
处理与浓度 Treatment and concentration | 1 d | 2 d | 3 d | 4 d |
---|---|---|---|---|
20 µmol/L FeSO4 | √ | √ | ||
25 µmol/L FeSO4 | √ | √ | ||
30 µmol/L FeSO4 | √ | √ | √ | |
25 µmol/L Fe2(SO4)3 | √ | √ | ||
30 µmol/L Fe2(SO4)3 | √ | √ | ||
35 µmol/L Fe2(SO4)3 | √ | √ | √ |
表2 缺铁培养不同时间下不同花生品种的SPAD值Table 2 SPAD values of peanut cultivars under different time of iron deficiency culture |
品种 Cultivar | SPAD(缺铁培养7 d) SPAD(Fe-deficient culture for 7 d) | SPAD(缺铁培养10 d) SPAD(Fe-deficient culture for 10 d) |
---|---|---|
农大818 Nongda 818 | 11.25b(a) | 2.51a(b) |
鲁花11 Luhua 11 | 12.13ab(a) | 2.00a(b) |
山花11号 Shanhua 11 | 11.84ab(a) | 1.70a(b) |
鲁花12 Luhua 12 | 11.50b(a) | 1.89a(b) |
ICG6848 | 13.51a(a) | 1.76a(b) |
白沙1016 Baisha 1016 | 11.41b(a) | 2.24a(b) |
表3 不同浓度Fe2+(FeSO4)处理不同时间后花生叶片ΔSPADTable 3 ΔSPAD of peanut leaves treated with Fe2+(FeSO4) at different time |
品种 Cultivar | 20 μmol/L | 25 μmol/L | 30 μmol/L | ||||
---|---|---|---|---|---|---|---|
2 d | 4 d | 2 d | 3 d | 1 d | 2 d | 4 d | |
农大818 Nongda 818 | 3.78ab | 7.05a | 3.52a | 4.62ab | 0.18a | 2.07ab | 8.08ab |
鲁花11 Luhua 11 | 4.13ab | 6.68a | 4.63a | 5.46a | 0.75a | 3.35a | 8.23ab |
山花11号 Shanhua 11 | 4.58a | 5.9a | 4.68a | 4.77ab | 0.56a | 3.3a | 9.29a |
鲁花12 Luhua 12 | 0.49c | 2.88b | 1.83b | 3.06bc | 0.64a | 3.18ab | 7.7ab |
ICG6848 | 0.56c | 2.34bc | 0.9b | 1.7c | 0.17a | 1.3b | 6.37b |
白沙1016 Baisha 1016 | 2.11b | 2.84b | 2.23b | 4.74ab | 0.22a | 2.24ab | 7.69ab |
图1 6份花生品种恢复供铁处理2 d后叶片颜色Fig. 1 Leaf color of 6 peanut cultivars after 2 d restoration of iron supply treatment |
表4 不同浓度Fe2+处理下不同花生品种干物重(g/株)差异Table 4 Dry matter (g/plant) of peanut cultivars under different Fe2+ concentrations treatments |
品种 Cultivar | 20 µmol/L FeSO4 | 25 µmol/L FeSO4 | 30 µmol/L FeSO4 | ||||||
---|---|---|---|---|---|---|---|---|---|
地上部干重 SDW | 根干重 RDW | 总干重 DW | 地上部干重 SDW | 根干重 RDW | 总干重 DW | 地上部干重 SDW | 根干重 RDW | 总干重 DW | |
农大818 Nongda 818 | 0.38a | 0.11a | 0.48a | 0.47a | 0.17a | 0.64a | 0.40a | 0.10ab | 0.50a |
鲁花11 Luhua 11 | 0.34a | 0.09a | 0.43a | 0.43a | 0.14ab | 0.57ab | 0.43a | 0.12a | 0.55a |
山花11号 Shanhua 11 | 0.37a | 0.10a | 0.47a | 0.47a | 0.13ab | 0.60ab | 0.47a | 0.14a | 0.61a |
鲁花12 Luhua 12 | 0.47a | 0.10a | 0.57a | 0.37ab | 0.13ab | 0.50abc | 0.47a | 0.12a | 0.59a |
ICG6848 | 0.18b | 0.03b | 0.21b | 0.31b | 0.09b | 0.39c | 0.24b | 0.06b | 0.30b |
白沙1016 Baisha 1016 | 0.46a | 0.11a | 0.57a | 0.38ab | 0.11b | 0.49bc | 0.46a | 0.10ab | 0.55a |
表5 不同浓度Fe2+处理各花生品种在不同时间的铁吸收量(mg/株)Table 5 Iron uptake (mg/plant) of peanut varieties treated with different concentrations of Fe2+ at different times |
品种 Cultivar | 20 μmol/L | 25 μmol/L | 30 μmol/L | ||||
---|---|---|---|---|---|---|---|
2 d | 4 d | 2 d | 3 d | 1 d | 2 d | 4 d | |
农大818 Nongda 818 | 0.11a | 0.21a | 0.22a | 0.30a | 0.25a | 0.19a | 0.31a |
鲁花11 Luhua 11 | 0.09ab | 0.20a | 0.21ab | 0.26b | 0.20ab | 0.22a | 0.28a |
山花11号 Shanhua 11 | 0.09ab | 0.17a | 0.18b | 0.25b | 0.23ab | 0.21a | 0.29a |
鲁花12 Luhua 12 | 0.10a | 0.19a | 0.14cd | 0.23c | 0.16b | 0.18a | 0.29a |
ICG6848 | 0.06b | 0.16a | 0.11d | 0.19d | 0.18ab | 0.23a | 0.28a |
白沙1016 Baisha 1016 | 0.10a | 0.21a | 0.16c | 0.22c | 0.21ab | 0.21a | 0.32a |
表6 不同浓度Fe3+处理不同时间后花生叶片ΔSPADTable 6 ΔSPAD of peanut leaves was treated with Fe2+ at different concentrations for different time |
品种 Cultivar | 25 μmol/L | 30 μmol/L | 35 μmol/L | ||||
---|---|---|---|---|---|---|---|
2 d | 4 d | 2 d | 3 d | 1 d | 2 d | 4 d | |
农大818 Nongda 818 | 0.61a | 3.08a | 4.16b | 5.72b | 1.52a | 2.65ab | 8.05a |
鲁花11 Luhua 11 | 1.31a | 2.92a | 6.71a | 7.96a | 0.52b | 1.6c | 9.46a |
山花11号 Shanhua 11 | 1.03a | 3.06a | 4.26b | 5.25b | 0.53b | 2.08abc | 9.07a |
鲁花12 Luhua 12 | 0.91a | 1.93a | 1.97c | 3.47c | 0.75b | 1.9bc | 7.44ab |
ICG6848 | 0.49a | 2.37a | 0.97c | 2.49c | 0.34b | 1.33c | 5.49b |
白沙1016 Baisha 1016 | 1.13a | 2.12a | 1.67c | 3.78c | 0.42b | 2.84a | 8.5a |
表7 不同浓度Fe3+处理下各花生品种干物重 /(g/株)Table 7 Dry matter (g/plant) of peanut cultivars under different Fe3+ concentrations treatments |
品种 Cultivar | 25 µmol/L Fe2(SO4)3 | 30 µmol/L Fe2(SO4)3 | 35 µmol/L Fe2(SO4)3 | ||||||
---|---|---|---|---|---|---|---|---|---|
地上部干重 SDW | 根干重 RDW | 总干重 DW | 地上部干重 SDW | 根干重 RDW | 总干重 DW | 地上部干重 SDW | 根干重 RDW | 总干重 DW | |
农大818 Nongda 818 | 0.40abc | 0.12a | 0.52a | 0.48a | 0.19a | 0.68a | 0.33bc | 0.08abc | 0.41bc |
鲁花11 Luhua 11 | 0.42ab | 0.09ab | 0.51a | 0.45ab | 0.16ab | 0.61abc | 0.47a | 0.11a | 0.57a |
山花11号 Shanhua 11 | 0.35bc | 0.10ab | 0.44ab | 0.49a | 0.16ab | 0.65ab | 0.37bc | 0.11a | 0.48ab |
鲁花12 Luhua 12 | 0.42ab | 0.09ab | 0.52a | 0.37b | 0.13b | 0.51c | 0.36bc | 0.08bc | 0.44bc |
ICG6848 | 0.23c | 0.05b | 0.28b | 0.28c | 0.09c | 0.36d | 0.29c | 0.06c | 0.35c |
白沙1016 Baisha 1016 | 0.54a | 0.11a | 0.65a | 0.42ab | 0.13b | 0.55bc | 0.41ab | 0.09abc | 0.49ab |
表8 不同铁敏感程度花生品种对Fe3+的活化量(mg/株)Table 8 Activation of Fe3+ by peanut varieties with different iron sensitivity (mg/ plant) |
品种 Cultivar | 25 μmol/L | 30 μmol/L | 35 μmol/L | ||||
---|---|---|---|---|---|---|---|
2 d | 4 d | 2 d | 3 d | 1 d | 2 d | 4 d | |
农大818 Nongda 818 | 0.13a | 0.33a | 0.28a | 0.34a | 0.21ab | 0.30ab | 0.39ab |
鲁花11 Luhua 11 | 0.15a | 0.31ab | 0.23ab | 0.32a | 0.20ab | 0.30a | 0.36ab |
山花11号 Shanhua 11 | 0.17a | 0.25c | 0.23ab | 0.32a | 0.19ab | 0.21b | 0.32b |
鲁花12 Luhua 12 | — | 0.31ab | 0.15c | 0.22b | 0.16ab | 0.27ab | 0.36ab |
ICG6848 | — | 0.29bc | 0.06d | 0.14c | 0.15b | 0.26ab | 0.34ab |
白沙1016 Baisha 1016 | — | 0.29bc | 0.21bc | 0.24b | 0.23a | 0.30ab | 0.40a |
1 |
张文静, 程建峰, 刘婕, 等. 植物铁素(Fe)营养的生理研究进展[J]. 中国农学通报, 2021, 37(36): 103-110.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
吴平. 植物营养分子生理学[M]. 北京: 科学出版社, 2001.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
邱园园, 刘昆, 卓鑫鑫, 等. 铁的生理功能及其对水稻产量和品质影响的研究综述[J]. 中国稻米, 2022, 28(1): 43-47. DOI: 10.3969/j.issn.1006-8082.2022.01.009 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
刘金涛, 姚凡, 李臻园, 等. 植物铁素吸收机制研究进展[J]. 热带农业科学, 2022, 42(5): 26-33. DOI: 10.12008/j.issn.1009-2196.2022.05.005 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
翟丙年, 刘海轮, 尚浩博, 等. 植物吸收利用铁的机理[J]. 西北植物学报, 2002, 22(1): 184-189. DOI: 10.3321/j.issn: 1000-4025.2002.01.032 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
张智猛, 万书波, 戴良香, 等. 花生铁营养状况研究[J]. 花生学报, 2003, 32(S1): 361-367. DOI: 10.3969/j.issn.1002-4093.2003.z1.079 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
郑毅, 张福锁. 石灰性土壤上花生缺铁黄化与土壤水分和重碳酸盐的关系[J]. 中国农业科技导报, 2000, 2(3): 73-76.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
刘彩云, 冯春成, 陈学忠, 等. 花生黄叶病的发生原因及防治措施[J]. 河南农业科学, 2004, 33(10): 90. DOI: 10.3969/j.issn.1004-3268.2004.10.034 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
夏友霖, 廖伯寿, 毛金雄, 等. 四川丘陵紫色土花生品种耐缺铁性鉴定与评价[J]. 中国油料作物学报, 2013, 35(3): 326-330. DOI: 10.7505/j.issn.1007-9084.2013.03.017 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
贾红霞, 刘风珍, 张秀荣, 等. 不同类型铁肥改善花生缺铁效果研究[J]. 花生学报, 2021, 50(2): 38-43, 63. DOI: 10.14001/j.issn.1002-4093.2021.02.007 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
高丽, 史衍玺. 石灰性土壤中花生耐低铁基因型差异的研究[J]. 中国油料作物学报, 2003, 25(4): 89-92. DOI: 10.3321/j.issn: 1007-9084.2003.04.020 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
郭世伟, 邹春琴, 江荣凤, 等. 提高植物体内铁再利用效率的研究现状及进展[J]. 中国农业大学学报, 2000, 5(3): 80-86. DOI: 10.3321/j.issn: 1007-4333.2000.03.014 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
张林琳, 刘星星, 祝亚昕, 等. 机理Ⅰ植物铁营养的吸收转运及信号调控机制研究进展[J]. 植物营养与肥料学报, 2021, 27(7): 1258-1272. DOI: 10.11674/zwyf.20210 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
邹春琴, 陈新平, 张福锁, 等. 活性铁作为植物铁营养状况诊断指标的相关研究[J]. 植物营养与肥料学报, 1998, 4(4): 399-406. DOI: 10.11674/zwyf.1998.0412 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
王金龙, 王薇薇, 万平, 等. 缺铁胁迫对小豆幼苗生理特性的影响[J]. 生物技术通报, 2016, 32(10): 141-147. DOI: 10.13560/j.cnki.biotech.bull.1985.2016.10.017 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
高丽, 史衍玺, 杨守祥. 花生耐低铁性的基因型差异及其生理特性研究[J]. 植物营养与肥料学报, 2003, 9(4): 480-483. DOI: 10.3321/j.issn: 1008-505X.2003.04.019 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
高丽, 史衍玺, 周健民. 花生缺铁黄化的敏感时期及耐低铁品种的筛选指标[J]. 植物营养与肥料学报, 2009, 15(4): 917-922. DOI: 10.3321/j.issn: 1008-505X.2009.04.027 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
任小平, 姜慧芳, 黄家权, 等. 水培条件下花生对缺铁的生理反应[J]. 植物遗传资源学报, 2010, 11(4): 491-497. DOI: 10.13430/j.cnki.jpgr.2010.04.014 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
谢昶琰, 金昕, 李岩, 等. 缺铁胁迫对杜梨幼苗生理及铁吸收和转运相关基因表达的影响[J]. 南京农业大学学报, 2019, 42(3): 465-473. DOI: 10.7685/jnau.201810006 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
任云, 刘静, 李哲馨, 等. 不同铁效率玉米品种苗期适应低铁胁迫的根系特征与铁积累差异[J]. 植物营养与肥料学报, 2021, 27(3): 500-510. DOI: 10.11674/zwyf.20396 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
季玉洁, 万亚男, 王琪, 等. 不同铁营养状况下根系特征及蒸腾对黄瓜幼苗吸收镉的影响[J]. 环境科学学报, 2017, 37(5): 1939-1946. DOI: 10.13671/j.hjkxxb.2016.0382 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
王翠玲, 周卫东, 杨晓明, 等. 石灰质土壤上不同葡萄品种叶片的铁含量与其黄化的关系[J]. 园艺学报, 2007, 34(4): 829-834. DOI: 10.16420/j.issn.0513-353x.2007.04.006 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
王永章, 刘成连, 徐茂龙, 等. 介质供铁水平对不同苹果基因型铁吸收特性的影响[J]. 莱阳农学院学报, 1997, 14(3): 164-167.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |