Welcome to CHINESE JOURNAL OF OIL CROP SCIENCES,

Most Viewed

  • Published in last 1 year
  • In last 2 years
  • In last 3 years
  • All

Please wait a minute...
  • Select all
    |
  • Gu-cheng LI, Qiu-chun NIU, Bo-feng LENG, Yi-fei DING, Ting TONG, Li-xia FAN
    CHINESE JOURNAL OF OIL CROP SCIENCES. 2024, 46(2): 228-235. https://doi.org/10.19802/j.issn.1007-9084.2023248

    Currently, the self-sufficiency rate of domestic vegetable oil is still low. As an important oil crop in China, rapeseed contributes to nearly 50% of the oil production of domestic oil crops, and it plays a vital role in ensuring national edible oil supply security. Since the "No. 1 central document" for 2012 first proposed the comprehensive deployment of agricultural science and technology strategy, the rapeseed industry has made great progress with scientific and technological support. The "No. 1 central document" for 2023 clearly proposes to further promote the soybean and oilseed production capacity improvement project, take coordinated steps to support the rapeseed industry, promote rice-oil rotation, and vigorously develop winter idle fields. This paper systematically figured the development status of rapeseed industry from 2012 to 2022, summarized the scientific and technological progress within this sector, and analysed the current challenges and prospects. Finally, policy suggestions were put forward to support the sustainable development of rapeseed industry in China.

  • Chang-gui LEI, Yu-zhu Meng, Jin-ping CHEN, Xiao-dong ZHANG, Hua-zhen CAI, Xu-wei ZHANG
    CHINESE JOURNAL OF OIL CROP SCIENCES. 2023, 45(3): 454-461. https://doi.org/10.19802/j.issn.1007-9084.2022114

    Virgin coconut oil is a valuable source of medium chain fatty acids, with lauric acid comprising 44%-54% of the total fatty acids. With the deepening of research, virgin coconut oil has attracted growing attention in the field of food and medicine. Besides, its market scale is also expanding year by year. In this article, the nutrient components and physicochemical properties of VCO were introduced, and the health effects of VCO on antioxidant, antiviral, antibacterial and cardiovascular disease prevention and their potential mechanisms were reviewed. It was aimed to provide theoretical reference for the further development and popularization of virgin coconut oil.

  • Hai-tang FENG, Han-zhong WANG
    CHINESE JOURNAL OF OIL CROP SCIENCES. 2024, 46(2): 221-227. https://doi.org/10.19802/j.issn.1007-9084.2024021

    China's vegetable oil industry has historically relied heavily on imports, which poses a substantial risk not only to national oil supply security but also across various domains including politics and economics. Given the intricate dynamics of global power competition, it is strategically imperative to optimize domestic land resource utilization efficiently while fostering ongoing advancements in agricultural science and technology. These measures are essential for bolstering vegetable oil production capacity domestically as well as diversifying import sources. By doing so effectively addresses potential security risks linked to edible vegetable oil supply chain disruptions while simultaneously safeguarding political stability, ensuring economic resilience, and promoting public welfare.

  • Bo-shou LIAO
    CHINESE JOURNAL OF OIL CROP SCIENCES. 2024, 46(1): 1-6. https://doi.org/10.19802/j.issn.1007-9084.2024051

    Implementation of the novel grand-food security strategy based on the principles of all-encompassing approach to food is highly crucial for diversifying sources, increasing supply amount, improving nutritional quality, enhancing market competitiveness, protecting eco-systems, ensuring self-coordination, promoting healthy consumption, and elevating comprehensive management of various foods in China under the New Era. Since the opening police starting in 1978, historical changes have occurred in production, trade and consumption of major agricultural products including the oilseeds, and food consumption and nutrition levels in the whole country have been significantly improved. However, the unbalanced production and consumption of certain agro-products have also led to serious problems such as an increase in chronic diseases, environmental pollution and risks within food supply chains, among which, the short domestic production and over-consumption of oilseeds and edible vegetable oils have been in a dilemma for more than ten years. Based on China’s natural resources and social-economic circumstances, the general road-map including enlarging production of rapeseed and peanut, promoting production of other special minor oilseeds and intensifying healthy consumption should be well followed in order to ensure the supply of oilseed products. It is proposed to increase the domestic vegetable oil production up to 20 million tons in the next decade, which would be the basic supply bottom line for domestic consumption. Meanwhile, further efforts should be made on improving the quality, production efficiency and market competitiveness and promoting healthy consumption of oilseed products.

  • Mao-lin YAN, Wen-hua SHI, Xiao-liang ZHOU, Zhi-dan ZHANG, Yang ZHANG, Cheng-liang WU
    CHINESE JOURNAL OF OIL CROP SCIENCES. 2023, 45(4): 643-653. https://doi.org/10.19802/j.issn.1007-9084.2022158

    To better understand import dependence and industrial safety on Chinese vegetable oils, two oilseeds (soybean and rapeseed) and 5 vegetable oils (soybean oil, peanut oil, rapeseed oil, sunflower oil and palm oil) were used as examples, to measure safety evaluation indexes, and to analyze the reliability and industrial safety status. Results showed that both soybean and rapeseed import concentrations are decreasing, dependence on single country became lower, thus the import reliability became higher. But the industrial safety index of both was higher than 80, still at a crisis state in 2020. In terms of main vegetable oils, the concentration of three oils (soybean oil, peanut oil and rapeseed oil) was decreasing, with low dependence on a single country with high import reliability, while sunflower oil and palm oil were relatively concentrated, with high dependence on single country in low import reliability. In 2020, the industrial safety index of soybean oil and peanut oil were 60 and 68 respectively, which were in an unsafe state. The industrial safety index of rapeseed oil, sunflower oil and palm oil were all greater than 80, which were all in crisis states. The safety problems of plant oilseed and oil industry are severe in China. We suggested that moderately expanding the cultivated area of oilseeds, cultivating high quality germplasm resources, improving mechanization level and domestic oil supply chain system, using the geopolitical advantage to establish good partnership, deepening the international trade cooperation, and encouraging competent agricultural enterprises to expand international raw material base and supply chain.

  • Juan ZHENG, Huang HUANG, Yi-tao LIAO, Lei WANG, Jia-cheng YUAN, Jian-xin LIN, Qing-xi LIAO
    CHINESE JOURNAL OF OIL CROP SCIENCES. 2024, 46(2): 245-259. https://doi.org/10.19802/j.issn.1007-9084.2022299

    Rapeseed is an essential oil crop in China. Hubei, Hunan and Jiangxi provinces in the middle reaches of the Yangtze River are the main planting areas, which account for more than 42% of the total planted area of rapeseed in China. The area has more than 3467 ha of winter fallow field, with massive potential for utilization. The total mechanization rate of rapeseed tillage, seeding and harvesting in the 3 provinces is higher than national average. Still, the uneven development, insufficient utilization of idle fields in winter, low levels of mechanization and intelligence, are technical bottlenecks for improving whole mechanization. This paper analyzes the basic situation and existing problems of the rapeseed industry in the middle reaches of the Yangtze River, combing tillage, seeding, harvesting key aspects of mechanization and intelligent technology, and gives the technical routes of the whole process of rapeseed production that could be promoted. Meanwhile, a comparative analysis of the technical characteristics and difficulties in promoting the application of the "tillage, seeding and harvesting" aspects of rapeseed production was carried out. Development trend of rapeseed production technology mode is semi-mechanized, mechanized to intelligent in the winter fallow fields. The technical development paths of each link are discribed as "anti-blocking, anti-sticky, anti-tangle, and high-speed, efficient, low consumption" mechanized tillage. Integrated tillage and seeding technology to complete multiple working procedures simultaneously. High efficiency, low consumption and low loss of rapeseed mechanized harvesting technology should be combined with harvesting and two-stage harvesting synergistic development. The mechanization technology of feeding, vegetable and fertilizer and the critical technology of intelligent rapeseed production should also be developed and applied simultaneously. To achieve high yield, several suggestions for promoting full mechanization technology model for rapeseed in the mid-winter fields of the Yangtze River are proposed.

  • Ting LI, Jia-qi WANG, Wei-cong HUO, Jin-feng WU, Jia-shi PENG, Ding-gang ZHOU, Ming-li YAN, Da-wei ZHANG
    CHINESE JOURNAL OF OIL CROP SCIENCES. 2023, 45(4): 711-719. https://doi.org/10.19802/j.issn.1007-9084.2022134

    Brassica juncea exhibites relatively tolerance to heavy metal cations. Because of NRAMP (natural resistance associated macrophage protein) is mainly involved in absorption and transport of metal cations, we used NRAMP homologous genes of Arabidopsis thaliana as reference, to better understand the NRAMPs in B. juncea. Thus 18 BjNRAMP memmbers in B. juncea were identified on 12 chromosomes. Phylogenetic analysis indicated that BjNRAMPs were clustered into 2 clades. Their expansionswere possibly caused by B.juncea genome triplication after the divergence of Arabidopsis and Brassica. Transcriptome sequencing data from roots and leaves under different concentration of cadmium (Cd) treatments indicated that expressions of BjNRAMPs were tissue-specific, in which BjNRAMP1.4 expression in root was increased under 30 mg/kg of Cd treatment. BjNRAMP2.2 expression in leaf was induced by 10 mg/kg of Cd treatment, but decreased in roots. After transformed into yeast, overexpression of BjNRAMP1.4 in Cd-sensitive yeast mutants significantly improved its tolerance to Cd. Promotion function of BjNRAMP2.2 played a limited role, not as good as BjNRAMP1.4.

  • Feng-jiao LIU, Song YU, Guan LIU
    CHINESE JOURNAL OF OIL CROP SCIENCES. 2023, 45(5): 1062-1072. https://doi.org/10.19802/j.issn.1007-9084.2022138

    Biotic stresses (as pests, diseases, ect.) and abiotic stresses (as temperature stress and water stress ect.) are key factors affecting plant development and yield. Lipids participate in various pathways of plant response to stress, forming a unique feedback response mechanism, including unsaturated fatty acids in disease and insect resistance in biological stress. In addition, fatty acid derivatives in abiotic stress could also increase intracellular osmotic regulation, reduce the degree of membrane lipid peroxidation and improve plant stress resistance. This paper summarizes the research progress on regulation mechanism of plant lipids under biological and abiotic stresses, briefly introduces stress types, and focuses on the changes and regulation of plant lipids under various stresses. It is expected to better understand on physiological activities of plants under different stresses, and to provide a basic theoretical reference for further research on lipids regulation on plant stress resistance.

  • Zi-cong HU, Chao-fan HU, Yan-po LI, Qiao-jun JIANG, Qun-he LI, Cui-lan FANG
    CHINESE JOURNAL OF OIL CROP SCIENCES. 2024, 46(1): 208-220. https://doi.org/10.19802/j.issn.1007-9084.2022234

    Pomegranate seed oil is a functional vegetable oil extracted from pomegranate seed, the byproduct of pomegranate processing. It has promising antioxidant, anti-inflammatory, anti-tumoral, and prevention of cardiovascular diseases activities. In this article, the research results of pomegranate seed oil at home and abroad in recent years were comprehensively reviewed from the aspects of the extraction method, nutritional composition, and health benefit of pomegranate seed oil. Aqueous enzymatic method, solvent extraction method, supercritical fluid extraction method and physics-assisted extraction method had significant influences on the yield and fatty acid composition. Although there were differences in the fatty acid composition of pomegranate seed oil from different origins and different extraction methods, overall, the proportion of unsaturated fatty acids in pomegranate seed oil reached 88.57%-95.33%. The unsaturated fatty acids were dominated by punicic acids (60.62%-81.40%). They were the main bioactive ingredients of pomegranate seed oil which could exert various nutritional effects. Therefore, pomegranate seed oil is a woody vegetable oil with high nutritional value and potential utilization value. This paper aims to provide a theoretical reference for further research on pomegranate seed oil and its development, and its utilization in food, biomedicine and other fields.

  • Na ZHANG, Jun-yan WU, Wei-liang QI, Li MA, Rui ZENG, Xiao-lei TAO, Wen-xin YANG, Li-jun LIU, Xue-cai LI, Gang YANG, Wan-cang SUN
    CHINESE JOURNAL OF OIL CROP SCIENCES. 2023, 45(4): 694-703. https://doi.org/10.19802/j.issn.1007-9084.2022176

    To study the function of VDAC1 gene in Brassica napus under low temperature stress, CDS region of BnVDAC1 gene was cloned using cDNAs as templates from both Tianyou 2288 (weak cold resistance) and 16NTS309 (strong cold resistance). Bioinformatics analysis found that their BnVDAC1 genes encoded 276 amino acids. The isoelectric points were 7.28 and 8.46 respectively. The proteins were stable (< 40). The secondary structures were mainly random coil, and the tertiary structures were composed of 2 β-barrels surrounded by β-sheets. Through pBI121-BnVDAC1-GFP fusion expression vector, tobacco leaf subcellular localization showed thatBnVDAC1 was mainly located in mitochondria or plasma membrane. The quantitative results showed that the relative conductivity, relative water content, H2O2 and O2?- content of the leaves of the 2 varieties were different under low temperature treatment. The expression level of BnVDAC1 was correlated with relative conductivity, relative water content and ROS changes. The differences in relative conductivity, relative water content, H2O2 and O2?- content of leaves between the 2 varieties under low temperature treatment were analyzed and compared. The quantitative results showed that the expression level of BnVDAC1 was correlated with relative conductivity, relative water content of leaves and ROS changes. The gene had obvious variety specificity and tissue expression specificity.

  • Sheng-nan MA, Hao-ran ZHANG, Yue WANG, Xu-hang ZHANG, Ya-qi HUANG, Jiang-xu WANG, Zhen-bang HU, Da-wei XIN, Qing-shan CHEN, Jin-hui WANG
    CHINESE JOURNAL OF OIL CROP SCIENCES. 2023, 45(4): 720-727. https://doi.org/10.19802/j.issn.1007-9084.2022153

    Soybean can symbiosis with rhizobia to produce nodule, through which symbiosis nitrogen fixation can provide essential nitrogen source for soybean growth and development. Rhizobia type III effectors are important signal molecules regulating symbiotic nitrogen fixation, which is very important for the establishment of symbiotic nitrogen fixation. In this study, NopAA mutants of rhizobia HH103 type III effecting factor were constructed and identified by bioinformatics analysis, three-parent hybridization and Southern blot were used to construct the mutant. Expression analysis showed that NopAA mutation significantly reduced the expression of soybean immune-related gene PR1. Through NopAA expression detection during nodule formation, it was found that NopAA could still be expressed by rhizobia after nodule maturity. Finally, NopAA mutation can significantly inhibit the production of nodule through nodule formation ability identification. This study laid a foundation for revealing the mechanism of the type III effector NopAA and provided a theoretical basis for the utilization of co-organic nitrogen fixation in soybean agricultural production.

  • Ling DOU, Qing-nan HAO, zhong-lu YANG, Shui-lian CHEN, Xian-zhi WANG, Zhi-hui SHAN, Xin-an ZHOU
    CHINESE JOURNAL OF OIL CROP SCIENCES. 2023, 45(4): 704-710. https://doi.org/10.19802/j.issn.1007-9084.2022137

    Soybean pod shattering is one of the important factors influencing soybean yield loss. In this study, gene distribution of pdh1 in 105 varieties from multiple variety tests in Yangtze River regions was studied. Results showed that 56 of all tested varieties contained pdh1 gene, and pdh1 was concentrated in summer type soybean. The number of varieties containing pdh1 accounted for 91.4% of the total summer soybeans. Its distribution has obvious regional characteristics. About 82.3% soybean varieties with pdh1 were bred from Huang-Huai-Hai regions and Northeast China (including Liaoning, Anhui, Hebei, Henan, Jiangsu, Shandong), while only 11.6% varieties containing pdh1 were from South China (including Fujian, Hubei, Hunan, Jiangxi, Sichuan and Zhejiang). Thus the pdh1 gene had been effectively used in breeding for Northeast China and Huang-Huai-Hai regions, and also could be a marker for pod-shattering resistance selection. But it were poorly used in South China due to the high temperature and humidity in fields. It was suggested that molecular marker assisted selection might be helpful to improve the breeding efficiency regionally on pod shattering resistance.

  • Jing-lin LIU, Shi-hang FAN, Wei HUA, Jun LI
    CHINESE JOURNAL OF OIL CROP SCIENCES. 2023, 45(3): 518-523. https://doi.org/10.19802/j.issn.1007-9084.2022127

    Molecular breeding of rapeseed depends mostly on genetic transformation. To optimize the process of Agrobacterium-mediated genetic transformation system (hypocotyl as explant) based on hygromycin selection, we utilized cultivar Zhongshuang 6 as material by changing the state of the selection medium and adding liquid medium for selection. After culturing in traditional solid selection medium for 21 days, callus was re-selected for 3 days in the liquid selection medium. Compared to traditional methods, the regeneration seedlings formed about one week earlier with ~6.94% increment of formation rate. In addition, the positive rate of transgenic plants increased by about 15% and the total transgenic efficiency increased by about 6%. In conclusion, the optimized method reported here provides effective technical support for gene function analysis and transgenic breeding in rapeseed.

  • Wan-wan FAN, Shao-jian LI, Su-ling SANG, Hai-yan ZHANG, Meng GAO, Zhen-yu WANG
    CHINESE JOURNAL OF OIL CROP SCIENCES. 2024, 46(2): 377-384. https://doi.org/10.19802/j.issn.1007-9084.2022289

    To identify the pathogens responsible for peanut pod rot in Henan Province, 92 samples of peanut pod rot were collected from various geographic regions and subjected to tissue isolation techniques. Pathogens were identified based on their morphological and molecular biological, and verified using Koch's rules. The results revealed that Fusarium, Aspergillus niger, Aspergillus flavus, Lasiodiplodia theobromae, Sclerotium rolfsii and Neocosmospora vasinfecta were the pathogenic fungi causing peanut pod rot in Henan Province, with Fusarium as the dominant genus. The main Fusarium species identified in this study were F. oxysporum, F. solani, F. proliferatum and F. chlamydosporum, with F. oxysporum and F. solani being the predominant species. This study further confirms that peanut pod rot is caused by multiple pathogens, providing a foundation for controlling this disease in Henan Province.

  • Man-yu YUAN, Yi-jun WU, Wen-ting ZHOU, Yan-xia CONG, Yu-tang QI, Wei-nong ZHANG
    CHINESE JOURNAL OF OIL CROP SCIENCES. 2024, 46(2): 430-436. https://doi.org/10.19802/j.issn.1007-9084.2022293

    The changes of acid value, peroxide value, phosphorus content, phytosterols, tocopherols and diglycerides of rapeseed oil, as well as the composition and content of phospholipids in degummed oil feet (oil sediment) were investigated under different degumming conditions using rapeseed crude oil as raw material. There were significant differences in degumming capabilities among water degumming and enzymatic degumming, enzymatic degumming showed more competence than water degumming, meanwhile, phospholipase A1 enzymatic degumming was more thorough compared with that of phospholipase C. The peroxide value and acid value of rapeseed oil showed a decreasing trend after degumming, additionally, the acid value of phospholipase A1 decreased the least. The content of tocopherols and phytosterols in degummed oil decreased slightly, with a maximum decrease of about 5%. Diacylglycerols content in phospholipase C enzymatic degumming increased significantly, meanwhile, the ratio of 1,3-diacylglycerols to 1,2-diacylglycerols in degummed oil decreased, with the ratio ranging from (2.2-3.0):1. There were significant differences in the composition and content of phospholipids in degummed oil feet after different degumming processes, which phospholipase A1 enzymatic degumming oil feet owned the highest content of lysophospholipids, and phospholipase C enzymatic degumming oil feet had the highest content of phosphatidylinositol.

  • Yu-qin TU, Jia-jia XIN, Yang ZHANG, Nan-feng ZHANG, Xing-lin DAI, Wei-feng TU, Jie TANG
    CHINESE JOURNAL OF OIL CROP SCIENCES. 2023, 45(4): 675-683. https://doi.org/10.19802/j.issn.1007-9084.2022162

    Rapeseed (Brassica napus L.) is the largest oil crop in China, and the mechanized production is the inevitable trend of rapeseed industry. But the long flowering period and inconsistencies of silique mature caused by indeterminate inflorescence in rapeseed are key links affecting mechanized harvest. Therefore, gene mapping, candidate gene prediction and cloning of the determinate inflorescence trait are of great significance for the genetic improvement of rapeseed, the cultivation of new varieties suitable for mechanized harvest and the breaking of the bottleneck of rapeseed mechanized production. A natural and novel rapeseed mutant with determinate inflorescence was identified in this study. The F2 isolated population was constructed by crossing with Zhongshuang 11(ZS11).Two pools with 20 determinate and indeterminate inflorescence F2 lines were used for gene mapping of determinate inflorescence, 20× and 10× depth of whole genome re-sequencing were conducted for the two pools and parental lines, respectively. A total of 277 679 SNP and 302 625 InDel polymorphic sites were identified for whole genome mapping of determinate inflorescence traits. Using the △ SNP-index method for association analysis, a total of 892 polymorphic marker loci were screened, containing 683 genes, which were mapped on six significantly associated interval of chromosome A09, A10 and C09, of which, the locus on chromosome C09 exhibited the highest peak. By A. thaliana genome homologous sequence alignment, combined with gene functional annotation and sequence difference analysis, genes of BnaA09g34410D, BnaA09g37880D, BnaA09g38520D, BnaC09g40470D, BnaC09g40480D and BnaC09g49710D were predicted as potential candidate genes of determinate inflorescence within the association interval on chromosomes A09 and C09. The genes of BnaA09g34410D, BnaA09g37880D and BnaC09g49710D were involved in the control of flower development and flowering time, and the three genes located within associated interval of chromosome C09 with the highest peak having sequence differences of allelic genes, were predicted as the main genes controlling this determinate inflorescence trait. The results establish the theoretical foundation for the cloning and function identification of the determinate inflorescence genes in rape.

  • Guang-hui LI, Xin GUO, Yan-bin SUN, Wei-nan ZHANG, Hui-ling ZHAO, Hong-jun ZHAO, Xing-jun WANG, Chun FU, Chuan-zhi ZHAO
    CHINESE JOURNAL OF OIL CROP SCIENCES. 2023, 45(4): 803-809. https://doi.org/10.19802/j.issn.1007-9084.2022139

    As nutritions for human health, anthocyanins and other flavonoids are important molecules that mediate plant adaptation to environmental stress. The objective of this study was to investigate oxidation resistance and salt tolerance of 3 peanut cultivars with pink (YZ9102), red (JHR1), and black (JHB1) testa colors. A pot experiment was conducted under controlled conditions. 7-day old seedlings were subjected to Hoagland solution (CK) and 150 mmol/L NaCl (SS) for 10 days. The changes in growth, flavonoid content, and antioxidant enzyme activities were analyzed. Results showed that salt stress caused a decrease in plant height, leaves area and biomass in the 3 cultivars. JHR1 and JHB1 exhibited higher salt tolerance than YZ9102. The antioxidant enzyme activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) of JHR1 and JHB1 were markedly increased by salt stress compared to YZ9102. The flavonoid contents exhibited the same trends in the 3 cultivars under salt stress. The relative malonaldehyde (MDA) content was lower in JHR1 and JHB1 than in YZ9102. Correlation analysis showed that the relative flavonoid content and MDA content were significantly (P< 0.05) related to salt tolerance. The flavonoid content was highly correlated (P< 0.01) with the SOD activity, MDA content, plant height and leaf area. In conclusion, the roots of JHR1 and JHB1 accumulated more flavonoids than YZ9102 under salt stress and showed higher antioxidant capacity and less inhibition of growth under salt stress. The results might provide information for screening salt resistant peanut cultivars.

  • Yi YANG, Shi-ying YE, Jian-guo MAN
    CHINESE JOURNAL OF OIL CROP SCIENCES. 2024, 46(4): 703-711. https://doi.org/10.19802/j.issn.1007-9084.2023295

    "Seven Major Crops Breeding" project is the sole special project in the field of biological seed industry during the “13th Five-Year Plan”. It is of great significance for consolidating and leading the development direction of breeding technology and safety ensuring of China's crop seed industry. Rapeseed is one of the important objects in the project. Based on the layout and implementation of rapeseed genetic breeding, this paper summarized the main research progress, major achievements, organization and implementation management experience of rapeseed genetic breeding during the period from 5 aspects, including elite germplasm exploring, genes cloning and mechanism analysis of important agronomic traits, innovation on breeding technologies for new materials and varieties, and seed multiplication and processing technology. In addition, 3 countermeasures and suggestions are put forward for future research in this field: 1st, strengthen top-level design and systematic layout of major projects; 2nd, optimize the management system and improve the regulatory framework for biotechnology breeding; 3rd, innovate the breeding industry chain and build a seed industry innovation system with close division of labor and cooperation between science and enterprise.

  • Yu-juan GU, Lei LIU, Xiang-xiang ZHAO, Fu-xia LIU, Fang-fang LU, Da-an LIANG, Tian-qi HAO, Qian GAO, De-peng WU, Hui GAO
    CHINESE JOURNAL OF OIL CROP SCIENCES. 2023, 45(3): 524-532. https://doi.org/10.19802/j.issn.1007-9084.2022207

    Rapeseed (Brassica napus L.) exhibits different degrees of secondary dormancy, which, if strong, can easily lead to the occurrence of volunteer plants in field and affect the quality and safety of seed production. In this study, we used Huaiyou-WSD-H2 (weak secondary dormancy) and Huaiyou-SSD-V1 (strong secondary dormancy) lines, which are derived from two breeding lines, to induce secondary dormancy using polyethylene glycol (PEG) to simulate drought, and conducted high-throughput transcriptome sequencing. Totally 17 706 highly expressed genes (FPKM> 5) from the high-throughput transcriptome sequencing were divided into 17 co-expression modules using weighted gene co-expression network analysis (WGCNA). Combined with GO/KEGG enrichment analysis and differential expression analysis, 3 genes related to tryptophan metabolism (BnaC08g25400D, BnaC09g31260D and BnaC09g49740D) were screened in the yellow module, which was highly significantly and positively correlated with secondary dormancy, and were differentially expressed between strong and weak secondary dormant materials after induction. Validation by qRT-PCR and preliminary analysis of the regulatory network of candidate genes were performed to provide a theoretical basis for resolving the genetic basis of tryptophan-dependent growth hormone biosynthesis pathway to regulate secondary seed dormancy in rapeseed.

  • Yu-qi HE, Kun-jiang YU, Yuan-hong LI, Qian WANG, Xu YANG, Xian-ya WANG, En-tang TIAN
    CHINESE JOURNAL OF OIL CROP SCIENCES. 2023, 45(4): 684-693. https://doi.org/10.19802/j.issn.1007-9084.2022147

    To achieve stable high yield and suitable mechanized cultivar for rapeseed(Brassica napus L.), QTLs on developmental plant height were studied using an population named AH, which composed of 189 recombined inbred members. Net increase in plant height of 5 growth stages and final plant height at maturity were investigated in Guiyang in 2020, and phenotypic variation and their correlations were analyzed. Based on previous constructed high-density molecular marker genetic linkage map, QTL mapping was performed to identify the stage-specific expression QTLs regulating plant height development on a genome-wide scale. Results showed great variations in plant height during the 5 growth stages after budding. Plant height changed the most in the 1st week, and the increase gradually slowed down over time. Net height growth at each stage was positively correlated with the previous stage. A total of 60 QTLs were detected in the 5 stages, including 4 major QTLs, 8 QTLs stably expressed in 2 different stages, and the others (specifically expressed in at least one stage). 6 QTLs were identified at maturity, including one major QTL. Comparative analysis showed that 6 QTLs at maturity stage were not detected at 5 developmental stages. Totally 5 major QTLs identified in this study have not been reported yet, thus can be used as new loci for developmental plant height breeding in B. napus. Combined with gene function annotation, 15 candidate genes related to plant height were preliminarily screened. It was expected to deepen the understanding of genetic regulation on rapeseed plant height, and provide new resources for semi-dwarf breeding.