1 |
Xu G, Fan X, Miller A J. Plant nitrogen assimilation and use efficiency[J]. Annu Rev Plant Biol, 2012, 63: 153-182. DOI:10.1146/annurev-arplant-042811-105532 .
doi: 10.1146/annurev-arplant-042811-105532
|
2 |
Roy S, Liu W, Nandety R S, et al. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation[J]. Plant Cell, 2020, 32(1): 15-41. DOI:10.1105/tpc.19.00279 .
doi: 10.1105/tpc.19.00279
|
3 |
Léran S, Varala K, Boyer J C, et al. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants[J]. Trends Plant Sci, 2014, 19(1): 5-9. DOI:10.1016/j.tplants.2013.08.008 .
doi: 10.1016/j.tplants.2013.08.008
|
4 |
Galván A, Fernández| E. Eukaryotic nitrate and nitrite transporters[J]. Cell Mol Life Sci CMLS, 2001, 58(2): 225-233. DOI:10.1007/PL00000850 .
doi: 10.1007/PL00000850
|
5 |
Okamoto M, Vidmar J J, Glass A D. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision[J]. Plant Cell Physiol, 2003, 44(3): 304-317. DOI:10.1093/pcp/pcg036 .
doi: 10.1093/pcp/pcg036
|
6 |
Forde B G. Nitrate transporters in plants: structure, function and regulation[J]. Biochim et Biophys Acta BBA Biomembr, 2000, 1465(1/2): 219-235. DOI:10.1016/S0005-2736(00)00140-1 .
doi: 10.1016/S0005-2736(00)00140-1
|
7 |
Orsel M, Krapp A, Daniel-Vedele F. Analysis of the NRT2 nitrate transporter family in Arabidopsis. Structure and gene expression[J]. Plant Physiol, 2002, 129(2): 886-896. DOI:10.1104/pp.005280 .
doi: 10.1104/pp.005280
|
8 |
赖灯妮. 高亲和性硝酸盐转运基因型水稻品种初筛及该基因的诱导表达研究[D]. 长沙: 湖南农业大学, 2009.
|
9 |
Wang Y Y, Tsay Y F. Arabidopsis nitrate transporter NRT1.9 is important in phloem nitrate transport[J]. Plant Cell, 2011, 23(5): 1945-1957. DOI:10.1105/tpc.111.083618 .
doi: 10.1105/tpc.111.083618
|
10 |
Araki R, Hasegawa H. Expression of rice (Oryza sativa L.) genes involved in high-affinity nitrate transport during the period of nitrate induction[J]. Breed Sci, 2006, 56(3): 295-302. DOI:10.1270/jsbbs.56.295 .
doi: 10.1270/jsbbs.56.295
|
11 |
Vidmar J J, Zhuo D, Siddiqi M Y, et al. Isolation and characterization of HvNRT2.3 and HvNRT2.4, cDNAs encoding high-affinity nitrate transporters from roots of barley[J]. Plant Physiol, 2000, 122(3): 783-792. DOI:10.1104/pp.122.3.783 .
doi: 10.1104/pp.122.3.783
|
12 |
von Wittgenstein N J, Le C H, Hawkins B J, et al. Evolutionary classification of ammonium, nitrate, and peptide transporters in land plants[J]. BMC Evol Biol, 2014, 14(1): 1-17. DOI:10.1186/1471-2148-14-11 .
doi: 10.1186/1471-2148-14-11
|
13 |
宋田丽, 周建建, 徐晨曦, 等. 植物硝酸盐转运蛋白功能及表达调控研究进展[J]. 上海师范大学学报(自然科学版), 2017, 46(5): 740-750. DOI:10.3969/J.ISSN.1000-5137.2017.05.019 .
doi: 10.3969/J.ISSN.1000-5137.2017.05.019
|
14 |
钱瑜, 察倩倩, 孔敏, 等. 植物NRT2家族的分子进化[J]. 江苏农业学报, 2015, 31(1): 45-54. DOI:10.3969/j.issn.1000-4440.2015.01.007 .
doi: 10.3969/j.issn.1000-4440.2015.01.007
|
15 |
Bertioli D J, Cannon S B, Froenicke L, et al. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut[J]. Nat Genet, 2016, 48(4): 438-446. DOI:10.1038/ng.3517 .
doi: 10.1038/ng.3517
|
16 |
Zhuang W, Chen H, Yang M, et al. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication[J]. Nat Genet, 2019, 51(5): 865-876. DOI:10.1038/s41588-019-0402-2 .
doi: 10.1038/s41588-019-0402-2
|
17 |
Bertioli D J, Jenkins J, Clevenger J, et al. The genome sequence of segmental allotetraploid peanut Arachis hypogaea [J]. Nat Genet, 2019, 51(5): 877-884. DOI:10.1038/s41588-019-0405-z .
doi: 10.1038/s41588-019-0405-z
|
18 |
Yin D, Ji C, Song Q, et al. Comparison of Arachis monticola with diploid and cultivated tetraploid genomes reveals asymmetric subgenome evolution and improvement of peanut[J]. Adv Sci: Weinh, 2020, 7(4): 1901672. DOI:10.1002/advs.201901672 .
doi: 10.1002/advs.201901672
|
19 |
Wang, Yan, Li, et al. GWAS discovery of candidate genes for yield-related traits in peanut and support from earlier QTL mapping studies[J]. Genes, 2019, 10(10): 803. DOI:10.3390/genes10100803 .
doi: 10.3390/genes10100803
|
20 |
Bateman A. The Pfam protein families database[J]. Nucleic Acids Res, 2004, 32(90001): 138D-141. DOI:10.1093/nar/gkh121 .
doi: 10.1093/nar/gkh121
|
21 |
Letunic I, Bork P. 20 years of the SMART protein domain annotation resource[J]. Nucleic Acids Res, 2018, 46(d1): D493-D496. DOI:10.1093/nar/gkx922 .
doi: 10.1093/nar/gkx922
|
22 |
Clevenger J, Chu Y, Scheffler B, et al. A developmental transcriptome map for allotetraploid Arachis hypogaea [J]. Front Plant Sci, 2016, 7: 1446. DOI:10.3389/fpls.2016.01446 .
doi: 10.3389/fpls.2016.01446
|
23 |
孔伟伟, 田丽彬, 李荣冲, 等. 花生NRT1基因对盐胁迫的响应[J]. 花生学报, 2019, 48(4): 1-7. DOI:10.14001/j.issn.1002-4093.2019.04.001 .
doi: 10.14001/j.issn.1002-4093.2019.04.001
|
24 |
朱林, 左妍妍, 曹金山, 等. 大豆NRT1.2同源基因的生物信息学分析[J]. 大豆科学, 2019, 38: 371-378.
|
25 |
Chen C Z, Lv X F, Li J Y, et al. Arabidopsis NRT1.5 is another essential component in the regulation of nitrate reallocation and stress tolerance[J]. Plant Physiol, 2012, 159(4): 1582-1590. DOI:10.1104/pp.112.199257 .
doi: 10.1104/pp.112.199257
|
26 |
Undurraga S F, Ibarra-Henríquez C, Fredes I, et al. Nitrate signaling and early responses in Arabidopsis roots[J]. J Exp Bot, 2017, 68(10): 2541-2551. DOI:10.1093/jxb/erx041 .
doi: 10.1093/jxb/erx041
|
27 |
Fan X, Tang Z, Tan Y, et al. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields[J]. PNAS, 2016, 113(26): 7118-7123. DOI:10.1073/pnas.1525184113 .
doi: 10.1073/pnas.1525184113
|
28 |
Tang W, Ye J, Yao X, et al. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice[J]. Nat Commun, 2019, 10(1): 5279. DOI:10.1038/s41467-019-13187-1 .
doi: 10.1038/s41467-019-13187-1
|
29 |
Zhao Y, Ma J, Li M, et al. Whole-genome resequencing-based QTL-seq identified AhTc1 gene encoding a R2R3-MYB transcription factor controlling peanut purple testa colour[J]. Plant Biotechnol J, 2020, 18(1): 96-105. DOI:10.1111/pbi.13175 .
doi: 10.1111/pbi.13175
|