中国油料作物学报 ›› 2022, Vol. 44 ›› Issue (6): 1166-1172.doi: 10.19802/j.issn.1007-9084.2022038
收稿日期:
2022-02-14
出版日期:
2022-12-25
发布日期:
2022-11-24
作者简介:
李哲斌(1984- ),女,硕士,讲师,研究方向为食品加工技术研究与开发,E-mail: 基金资助:
Received:
2022-02-14
Online:
2022-12-25
Published:
2022-11-24
摘要:
香榧仁油富含不饱和脂肪酸和生育酚、角鲨烯、β-谷甾醇等多种活性物质,并具有抗氧化、降血脂、抗动脉粥样硬化、抗寄生虫等多种生物活性,是一种具有较高营养价值的木本食用油。本文从香榧仁油的营养组成、理化性质和生物活性等方面,对近年来国内外有关香榧仁油的研究报道进行了全面综述,旨在为香榧仁油的进一步研究开发与综合利用提供理论参考,并对未来的研究重点进行展望。
中图分类号:
李哲斌. 香榧仁油的营养特性研究进展[J]. 中国油料作物学报, 2022, 44(6): 1166-1172.
Zhe-bin LI. Progress in nutritional property of Torreya grandis kernel oil[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1166-1172.
表1
不同品产地香榧仁油的脂肪酸组成及营养组分含量[10,19,23]
成分 Component | 诸暨 Zhuji | 兰溪 Lanxi | 嵊州 Shengzhou | 新昌 Xinchang | 黄山 Huangshan | 东阳 Dongyang | 富阳 Fuyang | 磐安 Pan'an | 临安 Lin'an |
---|---|---|---|---|---|---|---|---|---|
脂肪酸 Fatty acid /% | |||||||||
棕榈酸 Palmitic acid | 7.35±0.01 | 7.39±0.00 | 7.38±0.10 | 7.34±0.01 | 8.32±0.02 | 9.65±0.01 | 9.19±0.01 | 7.86±0.21 | 7.98±0.02 |
硬脂酸 Stearic acid | 3.03±0.00 | 2.64±0.00 | 3.03±0.00 | 3.03±0.00 | 3.05±0.01 | 2.14±0.01 | 2.44±0.01 | 4.00±0.46 | 2.78±0.01 |
油酸 Oleic acid | 35.10±0.00 | 31.62±0.01 | 34.62±0.01 | 34.37±0.01 | 22.53±0.01 | 25.82±0.02 | 26.37±0.01 | 31.74±1.72 | 32.49±0.01 |
亚油酸 Linoleic acid | 39.85±0.00 | 43.19±0.04 | 40.43±0.00 | 40.73±0.01 | 46.06±0.03 | 41.65±0.01 | 42.05±0.01 | 45.69±2.83 | 42.30±0.01 |
亚麻酸 Linolenic acid | 0.50±0.00 | 0.47±0.01 | 0.48±0.00 | 0.50±0.01 | 0.74±0.00 | 0.73±0.01 | 0.96±0.00 | 0.36±0.07 | 0.56±0.00 |
顺11-花生一烯酸 cis-11-arachidonic acid | 0.68±0.01 | 0.61±0.00 | 0.69±0.00 | 0.68±0.01 | 0.84±0.01 | 0.91±0.00 | 0.75±0.01 | 0.48±0.07 | 0.61±0.01 |
顺5,11-花生二烯酸 cis-5,11-arachidonic acid | 0.83±0.00 | 0.90±0.00 | 0.83±0.01 | 0.84±0.00 | 0.83±0.00 | 0.81±0.00 | 0.89±0.00 | - | 0.91±0.00 |
顺11,14-花生二烯酸 cis-11,14-arachidonic acid | 2.26±0.00 | 2.17±0.01 | 2.36±0.00 | 2.26±0.01 | 3.36±0.01 | 4.39±0.02 | 2.71±0.00 | 2.22±0.25 | 2.01±0.00 |
金松酸 Sciadonic acid | 9.13±0.00 | 9.57±0.01 | 9.23±0.01 | 9.28±0.01 | 12.89±0.03 | 12.36±0.03 | 13.23±0.01 | 7.55±0.36 | 9.42±0.03 |
饱和脂肪酸 Saturated fatty acid | 10.38±0.01 | 10.03±0.00 | 10.41±0.01 | 10.37±0.01 | 11.70±0.03 | 11.94±0.01 | 11.74±0.01 | 12.00±0.69 | 10.83±0.02 |
单不饱和脂肪酸 Monounsaturated fatty acid | 35.78±0.01 | 32.23±0.01 | 35.31±0.01 | 35.05±0.00 | 23.81±0.02 | 27.20±0.02 | 27.63±0.02 | 32.18±1.77 | 33.32±0.01 |
多不饱和脂肪酸 Polyunsaturated fatty acids | 52.57±0.00 | 56.30±0.05 | 53.33±0.01 | 53.61±0.01 | 63.88±0.05 | 59.93±0.05 | 59.84±0.02 | 55.83±2.40 | 55.21±0.03 |
植物甾醇 Phytosterol /(mg/kg) | |||||||||
菜油甾醇 Campesterol | 26.53±0.48 | 45.96±1.92 | 33.96±1.28 | 33.82±1.14 | 55.99±3.41 | 31.51±2.32 | 65.38±6.33 | 0.06±0.00 | 40.80±6.45 |
豆甾醇 Stigmasterol | 12.80±0.04 | 12.79±1.23 | 15.25±1.97 | 21.50±0.91 | 28.34±0.46 | 33.42±0.28 | 45.55±4.57 | 40.00±0.00 | 16.50±5.26 |
β-谷甾醇 β-sitosterol | 921.87±38.63 | 1031.46±19.88 | 952.96±0.61 | 979.42±11.74 | 1963.77±107.73 | 1303.48±3.51 | 2225.06±47.56 | 1060.00±20.00 | 1313.64±100.01 |
生育酚 Tocopherol /(mg/kg) | |||||||||
α-生育酚 α-tocopherol | 208.69±1.11 | 253.71±0.88 | 218.33±0.46 | 228.53±5.78 | 264.42±1.11 | 466.91±0.18 | 401.45±14.26 | - | 314.21±5.00 |
β-生育酚 β-tocopherol | 1401.46±9.63 | 1337.73±4.79 | 1325.75±2.21 | 1357.76±28.28 | 1963.77±107.73 | 1303.48±3.51 | 2225.06±47.56 | - | 1313.64±100.01 |
多酚 Polyphenol /(mg/kg) | 12.60±0.21 | 9.88±0.14 | 9.14±0.15 | 8.85±0.18 | 8.80±0.41 | 61.84±2.25 | 74.28±0.82 | 9.22±0.45 | 11.81±0.59 |
角鲨烯Squalene /(mg/kg) | 18.14±0.47 | 21.11±0.72 | 18.59±1.19 | 13.83±1.05 | 30.84±2.34 | 35.21±2.61 | 33.46±2.13 | - | 14.97±0.61 |
表2
不同产地香榧仁油的理化指标[9, 14]
指标 Index | 诸暨 Zhuji | 磐安 Pan'an | 嵊州 Shengzhou | 黄山 Huangshan | 绍兴1 Shaoxing 1 | 绍兴2 Shaoxing 2 |
---|---|---|---|---|---|---|
折光指数 Refractive index /25℃ | 1.472±0.00 | 1.472±0.00 | 1.473±0.00 | 1.473±0.00 | - | - |
酸价 Aacid value /(mg KOH/g) | 0.54±0.03 | 0.33±0.03 | 0.70±0.01 | 0.31±0.01 | 0.63±0.00 | 0.52±0.01 |
碘价 Iodine value /(g I2/100 g) | 124.8±23.19 | 119.37±5.85 | 121.84±2.14 | 121.05±3.00 | 124.33±0.22 | 139.05±0.17 |
过氧化值 Peroxide value /(meq O2/kg) | 1.05±0.05 | 0.64±0.02 | 1.15±0.03 | 0.87±0.04 | 3.37±0.02 | 6.85±0.08 |
皂化值 Saponification value /(mg KOH/g) | 187.81±0.60 | 181.04±1.71 | 182.62±1.91 | 195.74±3.58 | 122.86±0.17 | 187.87±0.21 |
1 |
Hu Y Y, Suo J W, Jiang G X, et al. The effect of ethylene on squalene and β-sitosterol biosynthesis and its key gene network analysis in Torreya grandis nuts during post-ripening process[J]. Food Chem, 2022, 368: 130819. DOI:10.1016/j.foodchem.2021.130819 .
doi: 10.1016/j.foodchem.2021.130819 |
2 |
Saeed M K, Deng Y L, Parveen Z, et al. Studies on the chemical constituents of Torreya grandis fort. ex Lindl[J]. J Appl Sci, 2007, 7(2): 269-273. DOI:10.3923/jas.2007.269.273 .
doi: 10.3923/jas.2007.269.273 |
3 |
高樟贵, 张敏, 厉锋, 等. 香榧病虫害研究进展[J]. 浙江林业科技, 2018, 38(5): 98-104. DOI:10.3969/j.issn.1001-3776.2018.05.017 .
doi: 10.3969/j.issn.1001-3776.2018.05.017 |
4 |
Chen X W, Jin H B. Review of cultivation and development of Chinese Torreya in China[J]. For Trees Livelihoods, 2019, 28(1): 68-78. DOI:10.1080/14728028.2018.1553690 .
doi: 10.1080/14728028.2018.1553690 |
5 | 浙江省质量技术监督局. 香榧栽培技术规程: [S]. 2012. |
6 |
Hu Y Y, Zhang Z Y, Hua B, et al. The interaction of temperature and relative humidity affects the main aromatic components in postharvest Torreya grandis nuts[J]. Food Chem, 2022, 368: 130836. DOI:10.1016/j.foodchem.2021.130836 .
doi: 10.1016/j.foodchem.2021.130836 |
7 | 喻卫武. 香榧生态高效栽培技术[J]. 浙江林业, 2020(10): 22. |
8 | 徐立伟, 马佳慧, 于淼. 香榧的营养和功能成分研究进展[J]. 食品工业, 2020, 41(8): 210-214. |
9 |
Ni Q X, Gao Q X, Yu W W, et al. Supercritical carbon dioxide extraction of oils from two Torreya grandis varieties seeds and their physicochemical and antioxidant properties[J]. LWT Food Sci Technol, 2015, 60(2): 1226-1234. DOI:10.1016/j.lwt.2014.09.007 .
doi: 10.1016/j.lwt.2014.09.007 |
10 | 毛家辉, 赵晨伟, 王建峰, 等. 榧籽油的金松酸结构鉴定及成分分析[J]. 中国油脂, 2017, 42(7): 135-139. |
11 |
Tian X, Mu W B, Zhang J Y,et al .Research progress on chemical composition and pharmacological activity of different parts of Torreya grandis [J].Nat Prod Res Dev, 2021, 33(4): 691-715. DOI:10.16333/j.1001-6880.2021.4.019 .
doi: 10.16333/j.1001-6880.2021.4.019 |
12 |
Wang Y P, Yao X H, Yang L, et al. Effects of harvest time on the yield, quality and active substance of Torreya grandis nut and its oil[J]. J Oleo Sci, 2021, 70(2): 175-184. DOI:10.5650/jos.ess20155 .
doi: 10.5650/jos.ess20155 |
13 |
Zhu M F, Tu Z C, Zhang L, et al. Antioxidant, metabolic enzymes inhibitory ability of Torreya grandis kernels, and phytochemical profiling identified by HPLC-QTOF-MS/MS[J]. J Food Biochem, 2019, 43(12): e13043. DOI:10.1111/jfbc.13043 .
doi: 10.1111/jfbc.13043 |
14 |
He Z Y, Zhu H D, Li W L, et al. Chemical components of cold pressed kernel oils from different Torreya grandis cultivars[J]. Food Chem, 2016, 209: 196-202. DOI:10.1016/j.foodchem.2016.04.053 .
doi: 10.1016/j.foodchem.2016.04.053 |
15 |
Moghaddam G, Heyden Y V, Rabiei Z, et al. Characterization of different olive pulp and kernel oils[J]. J Food Compos Anal, 2012, 28(1): 54-60. DOI:10.1016/j.jfca.2012.06.008 .
doi: 10.1016/j.jfca.2012.06.008 |
16 |
Sokoła-Wysoczańska E, Wysoczański T, Wagner J, et al. Polyunsaturated fatty acids and their potential therapeutic role in cardiovascular system disorders-A review[J]. Nutrients, 2018, 10(10): 1561. DOI:10.3390/nu10101561 .
doi: 10.3390/nu10101561 |
17 |
Baker E J, Miles E A, Calder P C. A review of the functional effects of pine nut oil, pinolenic acid and its derivative eicosatrienoic acid and their potential health benefits[J]. Prog Lipid Res, 2021, 82: 101097. DOI:10.1016/j.plipres.2021.101097 .
doi: 10.1016/j.plipres.2021.101097 |
18 |
Wu J S, Huang J D, Hong Y W, et al. De novo transcriptome sequencing of Torreya grandis reveals gene regulation in sciadonic acid biosynthesis pathway[J]. Ind Crops Prod, 2018, 120: 47-60. DOI:10.1016/j.indcrop.2018.04.041 .
doi: 10.1016/j.indcrop.2018.04.041 |
19 |
Shi L K, Mao J H, Zheng L, et al. Chemical characterization and free radical scavenging capacity of oils obtained from Torreya grandis Fort. ex. Lindl. and Torreya grandis Fort. var. Merrillii: a comparative study using chemometrics[J]. Ind Crops Prod, 2018, 115: 250-260. DOI:10.1016/j.indcrop.2018.02.037 .
doi: 10.1016/j.indcrop.2018.02.037 |
20 |
Bai G, Ma C G, Chen X W. Phytosterols in edible oil: Distribution, analysis and variation during processing[J]. Grain Oil Sci Technol, 2021, 4(1): 33-44. DOI:10.1016/j.gaost.2020.12.003 .
doi: 10.1016/j.gaost.2020.12.003 |
21 |
Shi L K, Zheng L, Mao J H, et al. Effects of the variety and oil extraction method on the quality, fatty acid composition and antioxidant capacity of Torreya grandis kernel oils[J]. LWT, 2018, 91: 398-405. DOI:10.1016/j.lwt.2018.01.080 .
doi: 10.1016/j.lwt.2018.01.080 |
22 |
Mendes A, Azevedo-Silva J, Fernandes J C. From sharks to yeasts: squalene in the development of vaccine adjuvants[J]. Pharmaceuticals (Basel), 2022, 15(3): 265. DOI:10.3390/ph15030265 .
doi: 10.3390/ph15030265 |
23 |
Reddy L H, Couvreur P. Squalene: a natural triterpene for use in disease management and therapy[J]. Adv Drug Deliv Rev, 2009, 61(15): 1412-1426. DOI:10.1016/j.addr.2009.09.005 .
doi: 10.1016/j.addr.2009.09.005 |
24 |
Zhang Y Y, Zhang F, Thakur K, et al. Effect of natural polyphenol on the oxidative stability of pecan oil[J]. Food Chem Toxicol, 2018, 119: 489-495. DOI:10.1016/j.fct.2017.10.001 .
doi: 10.1016/j.fct.2017.10.001 |
25 |
Nehdi I A, Sbihi H, Tan C P, et al. Characteristics, composition and thermal stability of Acacia senegal (L.) Willd. seed oil[J]. Ind Crops Prod, 2012, 36(1): 54-58. DOI:10.1016/j.indcrop.2011.08.005 .
doi: 10.1016/j.indcrop.2011.08.005 |
26 | Bachheti R K. Physico-chemical study of seed oil of Prunus armeniaca L. grown in Garhwal region (India) and its comparison with some conventional food oils[J]. Int Food Res J, 2012, 19(2): 577-781. |
27 |
Nehdi I. Characteristics, chemical composition and utilisation of Albizia julibrissin seed oil[J]. Ind Crops Prod, 2011, 33(1): 30-34. DOI:10.1016/j.indcrop.2010.08.004 .
doi: 10.1016/j.indcrop.2010.08.004 |
28 |
Cai Z Z, Li K Y, Lee W J, et al. Recent progress in the thermal treatment of oilseeds and oil oxidative stability: a review[J]. Fundam Res, 2021, 1(6): 767-784. DOI:10.1016/j.fmre.2021.06.022 .
doi: 10.1016/j.fmre.2021.06.022 |
29 |
Zhang Y, Li X L, Lu X Z, et al. Effect of oilseed roasting on the quality, flavor and safety of oil: a comprehensive review[J]. Food Res Int, 2021, 150(Pt A): 110791. DOI:10.1016/j.foodres.2021.110791 .
doi: 10.1016/j.foodres.2021.110791 |
30 |
Huang Z C, Du M J, Qian X Q, et al. Oxidative stability, shelf-life and stir-frying application of Torreya grandis seed oil[J]. Int J Food Sci Technol, 2022, 57(3): 1836-1845. DOI:10.1111/ijfs.15561 .
doi: 10.1111/ijfs.15561 |
31 |
Cui H X, Duan F F, Jia S S, et al. Antioxidant and tyrosinase inhibitory activities of seed oils from Torreya grandis fort. ex Lindl[J]. Biomed Res Int, 2018, 2018: 5314320. DOI:10.1155/2018/5314320 .
doi: 10.1155/2018/5314320 |
32 |
Zhou X R, Shang J, Qin M Y, et al. Fractionated antioxidant and anti-inflammatory kernel oil from Torreya fargesii [J]. Molecules, 2019, 24(18): 3402. DOI:10.3390/molecules24183402 .
doi: 10.3390/molecules24183402 |
33 |
肖铭慧, 黄敏婕, 董捷, 等. 香榧籽油对高脂膳食SD大鼠脂质代谢的影响及机理[J]. 中国油脂, 2022, 47(3): 71-77. DOI:10.19902/j.cnki.zgyz.1003-7969.210232 .
doi: 10.19902/j.cnki.zgyz.1003-7969.210232 |
34 |
Biswas R, Mukherjee P K, Dalai M K, et al. Tyrosinase inhibitory potential of purpurin in Rubia cordifolia-A bioactivity guided approach[J]. Ind Crops Prod, 2015, 74: 319-326. DOI:10.1016/j.indcrop.2015.04.066 .
doi: 10.1016/j.indcrop.2015.04.066 |
35 |
Alam N, Yoon K N, Lee J S, et al. Consequence of the antioxidant activities and tyrosinase inhibitory effects of various extracts from the fruiting bodies of Pleurotus ferulae[J]. Saudi J Biol Sci, 2012, 19(1): 111-118. DOI:10.1016/j.sjbs.2011.11.004 .
doi: 10.1016/j.sjbs.2011.11.004 |
36 |
Dong D D, Wang H F, Xu F, et al. Supercritical carbon dioxide extraction, fatty acid composition, oxidative stability, and antioxidant effect of Torreya grandis seed oil[J]. J Am Oil Chem Soc, 2014, 91(5): 817-825. DOI:10.1007/s11746-014-2419-0 .
doi: 10.1007/s11746-014-2419-0 |
37 |
Vigerust N F, Bjørndal B, Bohov P, et al. Krill oil versus fish oil in modulation of inflammation and lipid metabolism in mice transgenic for TNF-Α[J]. Eur J Nutr, 2013, 52(4): 1315-1325. DOI:10.1007/s00394-012-0441-2 .
doi: 10.1007/s00394-012-0441-2 |
38 |
Asset G, Leroy A, Bauge E, et al. Effects of dietary maritime pine (Pinus pinaster)-seed oil on high-density lipoprotein levels and in vitro cholesterol efflux in mice expressing human apolipoprotein A-I[J]. Br J Nutr, 2000, 84(3): 353-360. DOI:10.1017/s000711450000163x .
doi: 10.1017/s000711450000163x |
39 |
Endo Y, Osada Y, Kimura F, et al. Effects of Japanese Torreya (Torreya nucifera) seed oil on the activities and mRNA expression of lipid metabolism-related enzymes in rats[J]. Biosci Biotechnol Biochem, 2007, 71(1): 231-233. DOI:10.1271/bbb.60350 .
doi: 10.1271/bbb.60350 |
40 |
Wang H, Li Y, Wang R, et al. Chinese Torreya grandis cv. Merrillii seed oil affects obesity through accumulation of sciadonic acid and altering the composition of gut microbiota[J]. Food Sci Hum Wellness, 2022, 11(1): 58-67. DOI:10.1016/j.fshw.2021.07.007 .
doi: 10.1016/j.fshw.2021.07.007 |
41 |
Endo Y, Tsunokake K, Ikeda I. Effects of non-methylene-interrupted polyunsaturated fatty acid, sciadonic (all-Cis-5, 11, 14-eicosatrienoic acid) on lipid metabolism in rats[J]. Biosci Biotechnol Biochem, 2009, 73(3): 577-581. DOI:10.1271/bbb.80646 .
doi: 10.1271/bbb.80646 |
42 |
Chen B Q, Cui X Y, Zhao X, et al. Antioxidative and acute antiinflammatory effects of Torreya grandis [J]. Fitoterapia, 2006, 77(4): 262-267. DOI:10.1016/j.fitote.2006.03.019 .
doi: 10.1016/j.fitote.2006.03.019 |
43 |
黄一承, 李晓磊, 李丹. 香榧生物活性成分及生理功能研究进展[J]. 中国调味品, 2021, 46(8): 185-188. DOI:10.3969/j.issn.1000-9973.2021.08.039 .
doi: 10.3969/j.issn.1000-9973.2021.08.039 |
44 |
Chen S J, Huang W C, Yang T T, et al. Incorporation of sciadonic acid into cellular phospholipids reduces pro-inflammatory mediators in murine macrophages through NF-κB and MAPK signaling pathways[J]. Food Chem Toxicol, 2012, 50(10): 3687-3695. DOI:10.1016/j.fct.2012.07.057 .
doi: 10.1016/j.fct.2012.07.057 |
45 |
陈振德, 陈志良, 侯连兵, 等. 香榧子油对实验性动脉粥样硬化形成的影响[J]. 中药材, 2000, 23(9): 551-553. DOI:10.13863/j.issn1001-4454.2000.09.021 .
doi: 10.13863/j.issn1001-4454.2000.09.021 |
46 |
王鸿, 郭涛, 应国清. 榧属植物活性成分与药理作用研究进展[J]. 中草药, 2007, 38(11): 1747-1750. DOI:10.3321/j.issn: 0253-2670.2007.11.052 .
doi: 10.3321/j.issn: 0253-2670.2007.11.052 |
47 |
单麟珉, 孙小红. 香榧假种皮提取物对潜叶跳甲的杀虫活性初步研究[J]. 湖北农业科学, 2013, 52(9): 2060-2062. DOI:10.14088/j.cnki.issn0439-8114.2013.09.039 .
doi: 10.14088/j.cnki.issn0439-8114.2013.09.039 |
48 |
Wang J F, Huang Y J, Fang M J, et al. Brefeldin A, a cytotoxin produced by Paecilomyces sp. and Aspergillus clavatus isolated from Taxus mairei and Torreya grandis [J]. FEMS Immunol Med Microbiol, 2002, 34(1): 51-57. DOI:10.1111/j.1574-695X.2002.tb00602.x .
doi: 10.1111/j.1574-695X.2002.tb00602.x |
49 |
Duan F F, Jia S S, Yuan K. Antitumor effects and mechanism of n-butanol fraction from aril of Torreya grandis in H22 mice[J]. Pharmacogn Mag, 2017, 13(51): 351-357. DOI:10.4103/pm.pm_286_16 .
doi: 10.4103/pm.pm_286_16 |
[1] | 张博文, 穆青, 刘登望, 李林, 万书波, 王建国, 郭峰. 施钙对瘠薄红壤旱地花生土壤理化性质的影响[J]. 中国油料作物学报, 2020, 42(5): 896-. |
[2] | 王 幸,徐泽俊,齐玉军,吴存祥,邢兴华* . 耕作方式和秸秆还田对黄淮海夏大豆产量和土壤理化性状的影响[J]. 中国油料作物学报, 2017, 39(6): 834-. |
[3] | 赵 楠,包怡红,郭 阳 . 提取方法对脱脂松仁粕蛋白性质的影响[J]. 中国油料作物学报, 2017, 39(1): 117-. |
[4] | 王后苗,雷 永,晏立英,万丽云,程 珂,李前波,李振动,廖伯寿* . 花生及植物中木犀草素的研究进展[J]. 中国油料作物学报, 2015, 37(3): 383-. |
[5] | 陆吉瑞,陈艳伟,王承明. 菜籽饼粕多糖解酒保肝活性的研究[J]. 中国油料作物学报, 2013, 35(增刊(下)): 459-. |
[6] | 陆吉瑞,陈艳伟,王承明 . 菜籽饼粕多糖解酒保肝活性的研究[J]. 中国油料作物学报, 2013, 35(增刊(上)): 459-. |
[7] | 胡 珺.魏 芳 ,董绪燕,黄金发,马 良,吕 昕,杨 湄,江木兰,黄凤洪,李光明,陈 洪. 微生物油脂的分提及其组成与理化指标评价 [J]. 中国油料作物学报, 2012, 34(6): 655-660 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||