
花生种皮颜色智能识别模型的建立与应用
朱树良, 赵昆昆, 高古腔, 屈成鑫, 马莹莹, 任锐, 巩方平, 李忠峰, 马兴立, 张幸果, 殷冬梅
中国油料作物学报 ›› 2022, Vol. 44 ›› Issue (2) : 324-330.
花生种皮颜色智能识别模型的建立与应用
Establishment and application of peanut seed coat color intelligent recognition system
为解决花生群体种皮颜色快速鉴定难题,建立一种准确、简便和经济的种皮颜色识别标准,采用阿里云智能云计算平台颜色识别系统,测定黑、紫、粉、白等不同种皮颜色花生的HSV颜色空间(Hue, Saturation, Value color mode)数据,同时结合花生种皮花青素含量数据,构建花生种皮颜色指数(p)与种皮花青素含量(i)相关性模型,并用群体验证其准确性。研究结果表明,p和i 相关系数达0.932,根据p值将花生种皮颜色划分为黑色(≥0.6000±0.0238)、紫色(0.6000±0.0238~0.4000±0.0238)、粉色(0.4000±0.0238~0.2000±0.0238)、白色(≤0.2000±0.0238)四个组别;采用AI智能种皮颜色识别模型能够快速、准确鉴定RIL群体后代的种皮颜色,具有准确性高、上下界明显等优势。
In order to rapidly identified peanut seed coat color, an accurate, simple and economical seed coat color recognition system was established. In this experiment, the color recognition system of Aliyun intelligent cloud computing platform was used to determine the HSV (Hue, Saturation, Value color mode) color spatial data of peanut seed coat with different colors such as black, purple, pink and white. At the same time, combined with the anthocyanin content data of peanut seed coat, the correlation model between color index (p) and anthocyanin content (i) was constructed, and the accuracy was verified by population. The results showed that the correlation coefficient between p and i was 0.932. According to p value, peanut seed coat color was divided into four groups : black (≥0.6000±0.0238), purple (0.6000±0.0238~0.4000±0.0238), pink (0.4000±0.0238 ~ 0.2000±0.0238) and white (≤0.2000±0.0238). Using AI intelligent seed coat color recognition system can quickly and accurately identify the seed coat color of RIL population offspring, with high accuracy and obvious upper and lower bounds.
花生 / 种皮颜色 / HSV颜色空间 / 颜色识别 {{custom_keyword}} /
peanut / seed coat color / HSV color space / color recognition {{custom_keyword}} /
表1 不同种皮颜色花生花青素含量Table 1 Anthocyanin content of peanut with different seed coat colors /(mg/g) |
品种 Sample | i | Duncana (alpha = 0.05 ) | Student-Newman-Keuls (alpha = 0.05 ) | ||||||
---|---|---|---|---|---|---|---|---|---|
农大白7626 Nongdabai 7626 | 0.0145 | 0.0145 | 0.0145 | ||||||
开白2号 Kaibai 2 | 0.0148 | 0.0148 | 0.0148 | ||||||
白沙1016 Baisha1016 | 0.3518 | 0.3518 | 0.3518 | ||||||
农大花103 Nongdahua 103 | 0.5053 | 0.5053 | 0.5053 | ||||||
H7500 | 0.8104 | 0.8104 | 0.8104 | ||||||
ZP06 | 1.1902 | 1.1902 | 1.1902 | ||||||
Hua 8106 | 1.4326 | 1.4326 | 1.4326 | ||||||
农大黑7572 Nongdahei 7572 | 5.4545 | ||||||||
显著性Significance | 1.000000 | 0.215000 | 1.000000 | 0.058000 | 0.998000 | 0.215000 | 1.000000 | 0.058000 |
图4 花生种皮花青素相对含量与种皮颜色指数的相关性分析Fig. 4 Correlation analysis between anthocyanin content and seed coat color index of peanut |
图5 AI智能种皮颜色识别模型鉴定花生RIL群体Fig. 5 AI intelligent seed coat color recognition system identifies peanut RIL population |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
汪英, 吴慧莉, 张永军. 花生衣水提液防治化疗相关血小板减少症48例[J]. 福建中医药, 2012, 43(5): 40-41. DOI:10.3969/j.issn.1000-338X.2012.05.021 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
李海芬, 邱金梅, 陈小平, 等. 花生花青素合成相关基因的表达与种皮颜色关系[J]. 中国油料作物学报, 2017, 39(5): 600-605. DOI:10.7505/j.issn.1007-9084.2017.05.003 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
朱智伟, 杨炜, 林榕辉. 不同类型稻米的蛋白营养价值[J]. 中国水稻科学, 1991, 5(4): 157-162.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
童继平, 李素敏, 刘学军, 等. 有色稻米研究进展[J]. 植物遗传资源学报, 2011, 12(1): 13-18.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
柯裴蓓, 汪波, 周根友. 紫色稻颜色深浅多元化分析及种质筛选[J]. 金陵科技学院学报, 2020, 36(2): 70-73. DOI:10.16515/j.cnki.32-1722/n.2020.02.014 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
洪美艳. 甘蓝型油菜种皮颜色基因的精细定位与种皮转录组分析[D]. 武汉: 华中农业大学, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
李新疆, 王赏贵, 王丹, 等. 基于HSV色彩空间的红枣叶片病斑分割方法[J]. 安徽农学通报, 2020, 26(4): 85-87.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
齐锐丽, 陈曼龙, 杨宗浩, 等. 基于HSV模型与改进的OTSU算法花椒图像分割[J]. 中国农机化学报, 2019, 40(11): 155-160. DOI:10.13733/j.jcam.issn.2095-5553.2019.11.25 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
卢羿. 基于颜色特征识别的番茄果梗定位及特征增强算法[J]. 大众标准化, 2019(11): 23-25,28. DOI:10.3969/j.issn.1007-1350.2019.11.007 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
曹英丽,林明童,郭忠辉,等. 基于Lab颜色空间的非监督GMM水稻无人机图像分割[J].农业机械学报,2020,52(01):162-169.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
Smith,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
赵慧芳, 王小敏, 闾连飞, 等. 黑莓果实中花色苷的提取和测定方法研究[J]. 食品工业科技, 2008, 29(5): 176-179.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
徐青, 王代波, 刘国华, 等. 花青素稳定性影响因素及改善方法研究进展[J]. 食品研究与开发, 2020, 41(7): 218-224. DOI:10.12161/j.issn.1005-6521.2020.07.037 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
陈婷婷. 蓝莓花青素冷浸法的提取研究[J]. 食品安全导刊, 2020(24): 154,156.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
王满生,王发祥,杨晶,等. 莲房原花青素提取方法、生理功能及其在食品工业中应用的研究进展[J].食品工业科技,2020,:1-15.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
王玉书, 赵爽, 张琳, 等. 羽衣甘蓝花青素的定位及含量成分测定[J]. 中国农业大学学报, 2020, 25(11): 45-53. DOI:10.11841/j.issn.1007-4333.2020.11.05 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
王晓宇. 多个生物标志物的联合诊断问题[D]. 北京: 北京工业大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
刘永波, 雷波, 胡亮, 等. 机器视觉在HSV颜色空间下稻瘟病病程分级判定研究[J]. 农学学报, 2020, 10(10): 83-90.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
薛其勤, 别茹, 常宇涵, 等. 花生种皮颜色及花青素含量的遗传分析[J]. 花生学报, 2020, 49(1): 19-24. DOI:10.14001/j.issn.1002-4093.2020.01.003 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
岳喜庆, 张超, 王宇滨, 等. 双标样高效液相色谱法测定紫玉米花青素的含量[J]. 食品研究与开发, 2010, 31(6): 126-129. DOI:10.3969/j.issn.1005-6521.2010.06.037 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
刘国宏, 于竞翔, 任丽君. RGB检测方法研究进展[J]. 分析科学学报, 2020, 36(4): 591-596. DOI:10.13526/j.issn.1006-6144.2020.04.023 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
李健, 姜楠, 宝音巴特, 等. 空间颜色聚类算法及其在图像特征提取中的应用[J]. 吉林大学学报(理学版), 2020, 58(3): 627-633. DOI:10.13413/j.cnki.jdxblxb.2019282 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |